ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp2 Unicode version

Theorem ssxp2 4984
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp2  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp2
StepHypRef Expression
1 rnxpm 4976 . . . . . 6  |-  ( E. x  x  e.  C  ->  ran  ( C  X.  A )  =  A )
21adantr 274 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  ran  ( C  X.  A
)  =  A )
3 rnss 4777 . . . . . 6  |-  ( ( C  X.  A ) 
C_  ( C  X.  B )  ->  ran  ( C  X.  A
)  C_  ran  ( C  X.  B ) )
43adantl 275 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  ran  ( C  X.  A
)  C_  ran  ( C  X.  B ) )
52, 4eqsstrrd 3139 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  A  C_ 
ran  ( C  X.  B ) )
6 rnxpss 4978 . . . 4  |-  ran  ( C  X.  B )  C_  B
75, 6sstrdi 3114 . . 3  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  A  C_  B )
87ex 114 . 2  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  ->  A  C_  B ) )
9 xpss2 4658 . 2  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )
108, 9impbid1 141 1  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481    C_ wss 3076    X. cxp 4545   ran crn 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-dm 4557  df-rn 4558
This theorem is referenced by:  xpcanm  4986
  Copyright terms: Public domain W3C validator