ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp2 Unicode version

Theorem ssxp2 5119
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp2  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp2
StepHypRef Expression
1 rnxpm 5111 . . . . . 6  |-  ( E. x  x  e.  C  ->  ran  ( C  X.  A )  =  A )
21adantr 276 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  ran  ( C  X.  A
)  =  A )
3 rnss 4907 . . . . . 6  |-  ( ( C  X.  A ) 
C_  ( C  X.  B )  ->  ran  ( C  X.  A
)  C_  ran  ( C  X.  B ) )
43adantl 277 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  ran  ( C  X.  A
)  C_  ran  ( C  X.  B ) )
52, 4eqsstrrd 3229 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  A  C_ 
ran  ( C  X.  B ) )
6 rnxpss 5113 . . . 4  |-  ran  ( C  X.  B )  C_  B
75, 6sstrdi 3204 . . 3  |-  ( ( E. x  x  e.  C  /\  ( C  X.  A )  C_  ( C  X.  B
) )  ->  A  C_  B )
87ex 115 . 2  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  ->  A  C_  B ) )
9 xpss2 4785 . 2  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )
108, 9impbid1 142 1  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175    C_ wss 3165    X. cxp 4672   ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685
This theorem is referenced by:  xpcanm  5121
  Copyright terms: Public domain W3C validator