| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss2 | GIF version | ||
| Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 4771 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: ssxp2 5108 xpdom3m 6902 axresscn 7944 tx2cn 14590 dvfvalap 15001 |
| Copyright terms: Public domain | W3C validator |