![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpss2 | GIF version |
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3044 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 4545 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 415 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 2999 × cxp 4436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-in 3005 df-ss 3012 df-opab 3900 df-xp 4444 |
This theorem is referenced by: ssxp2 4868 xpdom3m 6550 axresscn 7397 |
Copyright terms: Public domain | W3C validator |