![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpss2 | GIF version |
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3199 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 4766 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 |
This theorem is referenced by: ssxp2 5103 xpdom3m 6888 axresscn 7920 tx2cn 14438 dvfvalap 14835 |
Copyright terms: Public domain | W3C validator |