ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom3m Unicode version

Theorem xpdom3m 6993
Description: A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
Assertion
Ref Expression
xpdom3m  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B    x, V    x, W

Proof of Theorem xpdom3m
StepHypRef Expression
1 xpsneng 6981 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
213adant2 1040 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
32ensymd 6935 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~~  ( A  X.  { x }
) )
4 xpexg 4833 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
543adant3 1041 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  B
)  e.  _V )
6 simp3 1023 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  x  e.  B )
76snssd 3813 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  { x }  C_  B )
8 xpss2 4830 . . . . . . 7  |-  ( { x }  C_  B  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
97, 8syl 14 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
10 ssdomg 6930 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  {
x } )  C_  ( A  X.  B
)  ->  ( A  X.  { x } )  ~<_  ( A  X.  B
) ) )
115, 9, 10sylc 62 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~<_  ( A  X.  B ) )
12 endomtr 6942 . . . . 5  |-  ( ( A  ~~  ( A  X.  { x }
)  /\  ( A  X.  { x } )  ~<_  ( A  X.  B
) )  ->  A  ~<_  ( A  X.  B
) )
133, 11, 12syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~<_  ( A  X.  B ) )
14133expia 1229 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  B  ->  A  ~<_  ( A  X.  B ) ) )
1514exlimdv 1865 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  e.  B  ->  A  ~<_  ( A  X.  B
) ) )
16153impia 1224 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   class class class wbr 4083    X. cxp 4717    ~~ cen 6885    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-er 6680  df-en 6888  df-dom 6889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator