ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom3m Unicode version

Theorem xpdom3m 6836
Description: A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
Assertion
Ref Expression
xpdom3m  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B    x, V    x, W

Proof of Theorem xpdom3m
StepHypRef Expression
1 xpsneng 6824 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
213adant2 1016 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
32ensymd 6785 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~~  ( A  X.  { x }
) )
4 xpexg 4742 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
543adant3 1017 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  B
)  e.  _V )
6 simp3 999 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  x  e.  B )
76snssd 3739 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  { x }  C_  B )
8 xpss2 4739 . . . . . . 7  |-  ( { x }  C_  B  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
97, 8syl 14 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
10 ssdomg 6780 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  {
x } )  C_  ( A  X.  B
)  ->  ( A  X.  { x } )  ~<_  ( A  X.  B
) ) )
115, 9, 10sylc 62 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~<_  ( A  X.  B ) )
12 endomtr 6792 . . . . 5  |-  ( ( A  ~~  ( A  X.  { x }
)  /\  ( A  X.  { x } )  ~<_  ( A  X.  B
) )  ->  A  ~<_  ( A  X.  B
) )
133, 11, 12syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~<_  ( A  X.  B ) )
14133expia 1205 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  B  ->  A  ~<_  ( A  X.  B ) ) )
1514exlimdv 1819 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  e.  B  ->  A  ~<_  ( A  X.  B
) ) )
16153impia 1200 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978   E.wex 1492    e. wcel 2148   _Vcvv 2739    C_ wss 3131   {csn 3594   class class class wbr 4005    X. cxp 4626    ~~ cen 6740    ~<_ cdom 6741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-er 6537  df-en 6743  df-dom 6744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator