ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss1 Unicode version

Theorem xpss1 4785
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3213 . 2  |-  C  C_  C
2 xpss12 4782 . 2  |-  ( ( A  C_  B  /\  C  C_  C )  -> 
( A  X.  C
)  C_  ( B  X.  C ) )
31, 2mpan2 425 1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-opab 4106  df-xp 4681
This theorem is referenced by:  ssres2  4986  ssxp1  5119  funssxp  5445  tposssxp  6335  tpostpos2  6351  tfrlemibfn  6414  tfr1onlembfn  6430  tfrcllembfn  6443  enq0enq  7544  tx1cn  14741
  Copyright terms: Public domain W3C validator