ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss1 Unicode version

Theorem xpss1 4773
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3203 . 2  |-  C  C_  C
2 xpss12 4770 . 2  |-  ( ( A  C_  B  /\  C  C_  C )  -> 
( A  X.  C
)  C_  ( B  X.  C ) )
31, 2mpan2 425 1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3157    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669
This theorem is referenced by:  ssres2  4973  ssxp1  5106  funssxp  5427  tposssxp  6307  tpostpos2  6323  tfrlemibfn  6386  tfr1onlembfn  6402  tfrcllembfn  6415  enq0enq  7498  tx1cn  14505
  Copyright terms: Public domain W3C validator