ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss1 Unicode version

Theorem xpss1 4693
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3148 . 2  |-  C  C_  C
2 xpss12 4690 . 2  |-  ( ( A  C_  B  /\  C  C_  C )  -> 
( A  X.  C
)  C_  ( B  X.  C ) )
31, 2mpan2 422 1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3102    X. cxp 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-in 3108  df-ss 3115  df-opab 4026  df-xp 4589
This theorem is referenced by:  ssres2  4890  ssxp1  5019  funssxp  5336  tposssxp  6190  tpostpos2  6206  tfrlemibfn  6269  tfr1onlembfn  6285  tfrcllembfn  6298  enq0enq  7334  tx1cn  12629
  Copyright terms: Public domain W3C validator