ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss1 Unicode version

Theorem xpss1 4714
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3162 . 2  |-  C  C_  C
2 xpss12 4711 . 2  |-  ( ( A  C_  B  /\  C  C_  C )  -> 
( A  X.  C
)  C_  ( B  X.  C ) )
31, 2mpan2 422 1  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3116    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-opab 4044  df-xp 4610
This theorem is referenced by:  ssres2  4911  ssxp1  5040  funssxp  5357  tposssxp  6217  tpostpos2  6233  tfrlemibfn  6296  tfr1onlembfn  6312  tfrcllembfn  6325  enq0enq  7372  tx1cn  12909
  Copyright terms: Public domain W3C validator