![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3282 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3184 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3151 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 |
This theorem is referenced by: difssd 3287 difss2 3288 ssdifss 3290 0dif 3519 undif1ss 3522 undifabs 3524 inundifss 3525 undifss 3528 unidif 3868 iunxdif2 3962 difexg 4171 exmid1stab 4238 reldif 4780 cnvdif 5073 resdif 5523 fndmdif 5664 swoer 6617 swoord1 6618 swoord2 6619 phplem2 6911 phpm 6923 unfiin 6984 sbthlem2 7019 sbthlemi4 7021 sbthlemi5 7022 difinfinf 7162 pinn 7371 niex 7374 dmaddpi 7387 dmmulpi 7388 lerelxr 8084 fisumss 11538 fprodssdc 11736 structcnvcnv 12637 strleund 12724 strleun 12725 strle1g 12727 discld 14315 |
Copyright terms: Public domain | W3C validator |