Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3244 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3146 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3113 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 |
This theorem is referenced by: difssd 3249 difss2 3250 ssdifss 3252 0dif 3480 undif1ss 3483 undifabs 3485 inundifss 3486 undifss 3489 unidif 3821 iunxdif2 3914 difexg 4123 reldif 4724 cnvdif 5010 resdif 5454 fndmdif 5590 swoer 6529 swoord1 6530 swoord2 6531 phplem2 6819 phpm 6831 unfiin 6891 sbthlem2 6923 sbthlemi4 6925 sbthlemi5 6926 difinfinf 7066 pinn 7250 niex 7253 dmaddpi 7266 dmmulpi 7267 lerelxr 7961 fisumss 11333 fprodssdc 11531 structcnvcnv 12410 strleund 12483 strleun 12484 strle1g 12485 discld 12776 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |