| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | GIF version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3286 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3188 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∖ cdif 3154 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difssd 3291 difss2 3292 ssdifss 3294 0dif 3523 undif1ss 3526 undifabs 3528 inundifss 3529 undifss 3532 unidif 3872 iunxdif2 3966 difexg 4175 exmid1stab 4242 reldif 4784 cnvdif 5077 resdif 5527 fndmdif 5668 swoer 6622 swoord1 6623 swoord2 6624 phplem2 6916 phpm 6928 unfiin 6989 sbthlem2 7026 sbthlemi4 7028 sbthlemi5 7029 difinfinf 7169 pinn 7379 niex 7382 dmaddpi 7395 dmmulpi 7396 lerelxr 8092 fisumss 11560 fprodssdc 11758 structcnvcnv 12705 strleund 12792 strleun 12793 strle1g 12795 discld 14398 |
| Copyright terms: Public domain | W3C validator |