Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3249 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3151 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3118 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 |
This theorem is referenced by: difssd 3254 difss2 3255 ssdifss 3257 0dif 3485 undif1ss 3488 undifabs 3490 inundifss 3491 undifss 3494 unidif 3826 iunxdif2 3919 difexg 4128 reldif 4729 cnvdif 5015 resdif 5462 fndmdif 5598 swoer 6537 swoord1 6538 swoord2 6539 phplem2 6827 phpm 6839 unfiin 6899 sbthlem2 6931 sbthlemi4 6933 sbthlemi5 6934 difinfinf 7074 pinn 7258 niex 7261 dmaddpi 7274 dmmulpi 7275 lerelxr 7969 fisumss 11342 fprodssdc 11540 structcnvcnv 12419 strleund 12493 strleun 12494 strle1g 12495 discld 12889 exmid1stab 13993 |
Copyright terms: Public domain | W3C validator |