ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss GIF version

Theorem difss 3248
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem difss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3244 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
21ssriv 3146 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3113  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129
This theorem is referenced by:  difssd  3249  difss2  3250  ssdifss  3252  0dif  3480  undif1ss  3483  undifabs  3485  inundifss  3486  undifss  3489  unidif  3821  iunxdif2  3914  difexg  4123  reldif  4724  cnvdif  5010  resdif  5454  fndmdif  5590  swoer  6529  swoord1  6530  swoord2  6531  phplem2  6819  phpm  6831  unfiin  6891  sbthlem2  6923  sbthlemi4  6925  sbthlemi5  6926  difinfinf  7066  pinn  7250  niex  7253  dmaddpi  7266  dmmulpi  7267  lerelxr  7961  fisumss  11333  fprodssdc  11531  structcnvcnv  12410  strleund  12483  strleun  12484  strle1g  12485  discld  12776  exmid1stab  13880
  Copyright terms: Public domain W3C validator