ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss GIF version

Theorem difss 3285
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem difss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3281 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
21ssriv 3183 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3150  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166
This theorem is referenced by:  difssd  3286  difss2  3287  ssdifss  3289  0dif  3518  undif1ss  3521  undifabs  3523  inundifss  3524  undifss  3527  unidif  3867  iunxdif2  3961  difexg  4170  exmid1stab  4237  reldif  4779  cnvdif  5072  resdif  5522  fndmdif  5663  swoer  6615  swoord1  6616  swoord2  6617  phplem2  6909  phpm  6921  unfiin  6982  sbthlem2  7017  sbthlemi4  7019  sbthlemi5  7020  difinfinf  7160  pinn  7369  niex  7372  dmaddpi  7385  dmmulpi  7386  lerelxr  8082  fisumss  11535  fprodssdc  11733  structcnvcnv  12634  strleund  12721  strleun  12722  strle1g  12724  discld  14304
  Copyright terms: Public domain W3C validator