Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3249 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3151 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3118 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 |
This theorem is referenced by: difssd 3254 difss2 3255 ssdifss 3257 0dif 3486 undif1ss 3489 undifabs 3491 inundifss 3492 undifss 3495 unidif 3828 iunxdif2 3921 difexg 4130 reldif 4731 cnvdif 5017 resdif 5464 fndmdif 5601 swoer 6541 swoord1 6542 swoord2 6543 phplem2 6831 phpm 6843 unfiin 6903 sbthlem2 6935 sbthlemi4 6937 sbthlemi5 6938 difinfinf 7078 pinn 7271 niex 7274 dmaddpi 7287 dmmulpi 7288 lerelxr 7982 fisumss 11355 fprodssdc 11553 structcnvcnv 12432 strleund 12506 strleun 12507 strle1g 12508 discld 12930 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |