| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | GIF version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3299 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3201 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∖ cdif 3167 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 |
| This theorem is referenced by: difssd 3304 difss2 3305 ssdifss 3307 0dif 3536 undif1ss 3539 undifabs 3541 inundifss 3542 undifss 3545 unidif 3887 iunxdif2 3981 difexg 4192 exmid1stab 4259 reldif 4802 cnvdif 5097 resdif 5555 fndmdif 5697 swoer 6660 swoord1 6661 swoord2 6662 phplem2 6964 phpm 6976 unfiin 7037 sbthlem2 7074 sbthlemi4 7076 sbthlemi5 7077 difinfinf 7217 pinn 7437 niex 7440 dmaddpi 7453 dmmulpi 7454 lerelxr 8150 fisumss 11773 fprodssdc 11971 structcnvcnv 12918 strleund 13005 strleun 13006 strle1g 13008 discld 14678 |
| Copyright terms: Public domain | W3C validator |