| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | GIF version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∖ cdif 3194 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difssd 3331 difss2 3332 ssdifss 3334 0dif 3563 undif1ss 3566 undifabs 3568 inundifss 3569 undifss 3572 unidif 3919 iunxdif2 4013 difexg 4224 exmid1stab 4291 reldif 4838 cnvdif 5134 resdif 5593 fndmdif 5739 swoer 6706 swoord1 6707 swoord2 6708 phplem2 7010 phpm 7023 unfiin 7084 sbthlem2 7121 sbthlemi4 7123 sbthlemi5 7124 difinfinf 7264 pinn 7492 niex 7495 dmaddpi 7508 dmmulpi 7509 lerelxr 8205 fisumss 11898 fprodssdc 12096 structcnvcnv 13043 strleund 13131 strleun 13132 strle1g 13134 discld 14804 |
| Copyright terms: Public domain | W3C validator |