ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss GIF version

Theorem difss 3330
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem difss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3326 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
21ssriv 3228 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3194  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210
This theorem is referenced by:  difssd  3331  difss2  3332  ssdifss  3334  0dif  3563  undif1ss  3566  undifabs  3568  inundifss  3569  undifss  3572  unidif  3919  iunxdif2  4013  difexg  4224  exmid1stab  4291  reldif  4838  cnvdif  5134  resdif  5593  fndmdif  5739  swoer  6706  swoord1  6707  swoord2  6708  phplem2  7010  phpm  7023  unfiin  7084  sbthlem2  7121  sbthlemi4  7123  sbthlemi5  7124  difinfinf  7264  pinn  7492  niex  7495  dmaddpi  7508  dmmulpi  7509  lerelxr  8205  fisumss  11898  fprodssdc  12096  structcnvcnv  13043  strleund  13131  strleun  13132  strle1g  13134  discld  14804
  Copyright terms: Public domain W3C validator