ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss GIF version

Theorem difss 3290
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem difss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3286 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
21ssriv 3188 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3154  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170
This theorem is referenced by:  difssd  3291  difss2  3292  ssdifss  3294  0dif  3523  undif1ss  3526  undifabs  3528  inundifss  3529  undifss  3532  unidif  3872  iunxdif2  3966  difexg  4175  exmid1stab  4242  reldif  4784  cnvdif  5077  resdif  5527  fndmdif  5668  swoer  6622  swoord1  6623  swoord2  6624  phplem2  6916  phpm  6928  unfiin  6989  sbthlem2  7026  sbthlemi4  7028  sbthlemi5  7029  difinfinf  7169  pinn  7379  niex  7382  dmaddpi  7395  dmmulpi  7396  lerelxr  8092  fisumss  11560  fprodssdc  11758  structcnvcnv  12705  strleund  12792  strleun  12793  strle1g  12795  discld  14398
  Copyright terms: Public domain W3C validator