| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3502 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3168 ∅c0 3462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 df-nul 3463 |
| This theorem is referenced by: sseq0 3504 abf 3506 eq0rdv 3507 ssdisj 3519 0dif 3534 poirr2 5081 iotanul 5253 f00 5476 map0b 6784 phplem2 6962 php5dom 6972 sbthlem7 7077 fi0 7089 casefun 7199 caseinj 7203 djufun 7218 djuinj 7220 nninfninc 7237 nnnninfeq 7242 exmidomni 7256 ixxdisj 10038 icodisj 10127 ioodisj 10128 uzdisj 10228 nn0disj 10273 swrd0g 11127 fsum2dlemstep 11795 fprodssdc 11951 fprod2dlemstep 11983 ntrcls0 14653 |
| Copyright terms: Public domain | W3C validator |