Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss0 | GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3460 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⊆ wss 3127 ∅c0 3420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 |
This theorem is referenced by: sseq0 3462 abf 3464 eq0rdv 3465 ssdisj 3477 0dif 3492 poirr2 5013 iotanul 5185 f00 5399 map0b 6677 phplem2 6843 php5dom 6853 sbthlem7 6952 fi0 6964 casefun 7074 caseinj 7078 djufun 7093 djuinj 7095 nnnninfeq 7116 exmidomni 7130 ixxdisj 9874 icodisj 9963 ioodisj 9964 uzdisj 10063 nn0disj 10108 fsum2dlemstep 11410 fprodssdc 11566 fprod2dlemstep 11598 ntrcls0 13211 |
Copyright terms: Public domain | W3C validator |