| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3531 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: sseq0 3533 abf 3535 eq0rdv 3536 ssdisj 3548 0dif 3563 poirr2 5121 iotanul 5294 f00 5519 map0b 6842 phplem2 7022 php5dom 7032 sbthlem7 7138 fi0 7150 casefun 7260 caseinj 7264 djufun 7279 djuinj 7281 nninfninc 7298 nnnninfeq 7303 exmidomni 7317 ixxdisj 10107 icodisj 10196 ioodisj 10197 uzdisj 10297 nn0disj 10342 swrd0g 11200 fsum2dlemstep 11953 fprodssdc 12109 fprod2dlemstep 12141 ntrcls0 14813 |
| Copyright terms: Public domain | W3C validator |