ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 GIF version

Theorem ss0 3491
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0 (𝐴 ⊆ ∅ → 𝐴 = ∅)

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3490 . 2 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
21biimpi 120 1 (𝐴 ⊆ ∅ → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  sseq0  3492  abf  3494  eq0rdv  3495  ssdisj  3507  0dif  3522  poirr2  5062  iotanul  5234  f00  5449  map0b  6746  phplem2  6914  php5dom  6924  sbthlem7  7029  fi0  7041  casefun  7151  caseinj  7155  djufun  7170  djuinj  7172  nninfninc  7189  nnnninfeq  7194  exmidomni  7208  ixxdisj  9978  icodisj  10067  ioodisj  10068  uzdisj  10168  nn0disj  10213  fsum2dlemstep  11599  fprodssdc  11755  fprod2dlemstep  11787  ntrcls0  14367
  Copyright terms: Public domain W3C validator