| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3531 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: sseq0 3533 abf 3535 eq0rdv 3536 ssdisj 3548 0dif 3563 poirr2 5117 iotanul 5290 f00 5513 map0b 6824 phplem2 7002 php5dom 7012 sbthlem7 7118 fi0 7130 casefun 7240 caseinj 7244 djufun 7259 djuinj 7261 nninfninc 7278 nnnninfeq 7283 exmidomni 7297 ixxdisj 10087 icodisj 10176 ioodisj 10177 uzdisj 10277 nn0disj 10322 swrd0g 11178 fsum2dlemstep 11931 fprodssdc 12087 fprod2dlemstep 12119 ntrcls0 14790 |
| Copyright terms: Public domain | W3C validator |