ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 GIF version

Theorem ss0 3532
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0 (𝐴 ⊆ ∅ → 𝐴 = ∅)

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3531 . 2 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
21biimpi 120 1 (𝐴 ⊆ ∅ → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  sseq0  3533  abf  3535  eq0rdv  3536  ssdisj  3548  0dif  3563  poirr2  5117  iotanul  5290  f00  5513  map0b  6824  phplem2  7002  php5dom  7012  sbthlem7  7118  fi0  7130  casefun  7240  caseinj  7244  djufun  7259  djuinj  7261  nninfninc  7278  nnnninfeq  7283  exmidomni  7297  ixxdisj  10087  icodisj  10176  ioodisj  10177  uzdisj  10277  nn0disj  10322  swrd0g  11178  fsum2dlemstep  11931  fprodssdc  12087  fprod2dlemstep  12119  ntrcls0  14790
  Copyright terms: Public domain W3C validator