ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 GIF version

Theorem ss0 3487
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0 (𝐴 ⊆ ∅ → 𝐴 = ∅)

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3486 . 2 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
21biimpi 120 1 (𝐴 ⊆ ∅ → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  sseq0  3488  abf  3490  eq0rdv  3491  ssdisj  3503  0dif  3518  poirr2  5058  iotanul  5230  f00  5445  map0b  6741  phplem2  6909  php5dom  6919  sbthlem7  7022  fi0  7034  casefun  7144  caseinj  7148  djufun  7163  djuinj  7165  nninfninc  7182  nnnninfeq  7187  exmidomni  7201  ixxdisj  9969  icodisj  10058  ioodisj  10059  uzdisj  10159  nn0disj  10204  fsum2dlemstep  11577  fprodssdc  11733  fprod2dlemstep  11765  ntrcls0  14299
  Copyright terms: Public domain W3C validator