![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss0 | GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3487 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 ∅c0 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 |
This theorem is referenced by: sseq0 3489 abf 3491 eq0rdv 3492 ssdisj 3504 0dif 3519 poirr2 5059 iotanul 5231 f00 5446 map0b 6743 phplem2 6911 php5dom 6921 sbthlem7 7024 fi0 7036 casefun 7146 caseinj 7150 djufun 7165 djuinj 7167 nninfninc 7184 nnnninfeq 7189 exmidomni 7203 ixxdisj 9972 icodisj 10061 ioodisj 10062 uzdisj 10162 nn0disj 10207 fsum2dlemstep 11580 fprodssdc 11736 fprod2dlemstep 11768 ntrcls0 14310 |
Copyright terms: Public domain | W3C validator |