![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss0 | GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 | ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3486 | . 2 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | biimpi 120 | 1 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 |
This theorem is referenced by: sseq0 3488 abf 3490 eq0rdv 3491 ssdisj 3503 0dif 3518 poirr2 5058 iotanul 5230 f00 5445 map0b 6741 phplem2 6909 php5dom 6919 sbthlem7 7022 fi0 7034 casefun 7144 caseinj 7148 djufun 7163 djuinj 7165 nninfninc 7182 nnnninfeq 7187 exmidomni 7201 ixxdisj 9969 icodisj 10058 ioodisj 10059 uzdisj 10159 nn0disj 10204 fsum2dlemstep 11577 fprodssdc 11733 fprod2dlemstep 11765 ntrcls0 14299 |
Copyright terms: Public domain | W3C validator |