Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dif0 | GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 3483 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 3242 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 3252 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2193 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∖ cdif 3118 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: disjdif2 3493 2oconcl 6418 diffifi 6872 undifdc 6901 difinfinf 7078 ismkvnex 7131 0cld 12906 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |