| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif0 | GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 3533 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 3292 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 3302 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2229 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∖ cdif 3167 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: disjdif2 3543 exmid1stab 4259 2oconcl 6537 diffifi 7005 undifdc 7035 difinfinf 7217 ismkvnex 7271 m1bits 12341 0cld 14654 |
| Copyright terms: Public domain | W3C validator |