![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dif0 | GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 3397 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 3157 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 3167 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2137 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 ∖ cdif 3034 ∅c0 3329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rab 2399 df-v 2659 df-dif 3039 df-in 3043 df-ss 3050 df-nul 3330 |
This theorem is referenced by: disjdif2 3407 2oconcl 6290 diffifi 6741 undifdc 6765 difinfinf 6938 ismkvnex 6979 0cld 12124 exmid1stab 12887 |
Copyright terms: Public domain | W3C validator |