| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > disjdif | GIF version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| disjdif | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss1 3383 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | inssdif0im 3518 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∖ cdif 3154 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: ssdifin0 3532 difdifdirss 3535 fvsnun1 5759 fvsnun2 5760 phplem2 6914 unfiin 6987 xpfi 6993 sbthlem7 7029 sbthlemi8 7030 exmidfodomrlemim 7268 fihashssdif 10910 zfz1isolem1 10932 fsumlessfi 11625 fprodsplit1f 11799 setsfun 12713 setsfun0 12714 setsslid 12729 | 
| Copyright terms: Public domain | W3C validator |