ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif GIF version

Theorem disjdif 3497
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
disjdif (𝐴 ∩ (𝐵𝐴)) = ∅

Proof of Theorem disjdif
StepHypRef Expression
1 inss1 3357 . 2 (𝐴𝐵) ⊆ 𝐴
2 inssdif0im 3492 . 2 ((𝐴𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵𝐴)) = ∅)
31, 2ax-mp 5 1 (𝐴 ∩ (𝐵𝐴)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cdif 3128  cin 3130  wss 3131  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  ssdifin0  3506  difdifdirss  3509  fvsnun1  5715  fvsnun2  5716  phplem2  6855  unfiin  6927  xpfi  6931  sbthlem7  6964  sbthlemi8  6965  exmidfodomrlemim  7202  fihashssdif  10800  zfz1isolem1  10822  fsumlessfi  11470  fprodsplit1f  11644  setsfun  12499  setsfun0  12500  setsslid  12515
  Copyright terms: Public domain W3C validator