Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjdif | GIF version |
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
disjdif | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3342 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | inssdif0im 3476 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: ssdifin0 3490 difdifdirss 3493 fvsnun1 5682 fvsnun2 5683 phplem2 6819 unfiin 6891 xpfi 6895 sbthlem7 6928 sbthlemi8 6929 exmidfodomrlemim 7157 fihashssdif 10731 zfz1isolem1 10753 fsumlessfi 11401 fprodsplit1f 11575 setsfun 12429 setsfun0 12430 setsslid 12444 |
Copyright terms: Public domain | W3C validator |