ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif GIF version

Theorem disjdif 3564
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
disjdif (𝐴 ∩ (𝐵𝐴)) = ∅

Proof of Theorem disjdif
StepHypRef Expression
1 inss1 3424 . 2 (𝐴𝐵) ⊆ 𝐴
2 inssdif0im 3559 . 2 ((𝐴𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵𝐴)) = ∅)
31, 2ax-mp 5 1 (𝐴 ∩ (𝐵𝐴)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cdif 3194  cin 3196  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  ssdifin0  3573  difdifdirss  3576  fvsnun1  5840  fvsnun2  5841  phplem2  7022  unfiin  7096  xpfi  7102  sbthlem7  7138  sbthlemi8  7139  exmidfodomrlemim  7387  fihashssdif  11048  zfz1isolem1  11070  fsumlessfi  11979  fprodsplit1f  12153  setsfun  13075  setsfun0  13076  setsslid  13091
  Copyright terms: Public domain W3C validator