| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | GIF version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3394 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | inssdif0im 3529 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∖ cdif 3164 ∩ cin 3166 ⊆ wss 3167 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 |
| This theorem is referenced by: ssdifin0 3543 difdifdirss 3546 fvsnun1 5788 fvsnun2 5789 phplem2 6957 unfiin 7030 xpfi 7036 sbthlem7 7072 sbthlemi8 7073 exmidfodomrlemim 7316 fihashssdif 10970 zfz1isolem1 10992 fsumlessfi 11815 fprodsplit1f 11989 setsfun 12911 setsfun0 12912 setsslid 12927 |
| Copyright terms: Public domain | W3C validator |