| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | GIF version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3424 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | inssdif0im 3559 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∖ cdif 3194 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: ssdifin0 3573 difdifdirss 3576 fvsnun1 5829 fvsnun2 5830 phplem2 7002 unfiin 7076 xpfi 7082 sbthlem7 7118 sbthlemi8 7119 exmidfodomrlemim 7367 fihashssdif 11027 zfz1isolem1 11049 fsumlessfi 11957 fprodsplit1f 12131 setsfun 13053 setsfun0 13054 setsslid 13069 |
| Copyright terms: Public domain | W3C validator |