ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni2 GIF version

Theorem elni2 7217
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 pinn 7212 . . 3 (𝐴N𝐴 ∈ ω)
2 0npi 7216 . . . . . 6 ¬ ∅ ∈ N
3 eleq1 2220 . . . . . 6 (𝐴 = ∅ → (𝐴N ↔ ∅ ∈ N))
42, 3mtbiri 665 . . . . 5 (𝐴 = ∅ → ¬ 𝐴N)
54con2i 617 . . . 4 (𝐴N → ¬ 𝐴 = ∅)
6 0elnn 4576 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
71, 6syl 14 . . . . 5 (𝐴N → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
87ord 714 . . . 4 (𝐴N → (¬ 𝐴 = ∅ → ∅ ∈ 𝐴))
95, 8mpd 13 . . 3 (𝐴N → ∅ ∈ 𝐴)
101, 9jca 304 . 2 (𝐴N → (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
11 nndceq0 4575 . . . . . 6 (𝐴 ∈ ω → DECID 𝐴 = ∅)
12 df-dc 821 . . . . . 6 (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1311, 12sylib 121 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1413anim1i 338 . . . 4 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
15 ancom 264 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
16 andi 808 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1715, 16bitr3i 185 . . . 4 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1814, 17sylib 121 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
19 noel 3398 . . . . . . . . 9 ¬ ∅ ∈ ∅
20 eleq2 2221 . . . . . . . . 9 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
2119, 20mtbiri 665 . . . . . . . 8 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
2221pm2.21d 609 . . . . . . 7 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴N))
2322impcom 124 . . . . . 6 ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N)
2423a1i 9 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N))
25 df-ne 2328 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
26 elni 7211 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2726simplbi2 383 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴N))
2825, 27syl5bir 152 . . . . . 6 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → 𝐴N))
2928adantld 276 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴N))
3024, 29jaod 707 . . . 4 (𝐴 ∈ ω → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3130adantr 274 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3218, 31mpd 13 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 𝐴N)
3310, 32impbii 125 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1335  wcel 2128  wne 2327  c0 3394  ωcom 4547  Ncnpi 7175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-suc 4330  df-iom 4548  df-ni 7207
This theorem is referenced by:  addclpi  7230  mulclpi  7231  mulcanpig  7238  addnidpig  7239  ltexpi  7240  ltmpig  7242  nnppipi  7246  archnqq  7320  enq0tr  7337
  Copyright terms: Public domain W3C validator