ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni2 GIF version

Theorem elni2 7426
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 pinn 7421 . . 3 (𝐴N𝐴 ∈ ω)
2 0npi 7425 . . . . . 6 ¬ ∅ ∈ N
3 eleq1 2267 . . . . . 6 (𝐴 = ∅ → (𝐴N ↔ ∅ ∈ N))
42, 3mtbiri 676 . . . . 5 (𝐴 = ∅ → ¬ 𝐴N)
54con2i 628 . . . 4 (𝐴N → ¬ 𝐴 = ∅)
6 0elnn 4666 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
71, 6syl 14 . . . . 5 (𝐴N → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
87ord 725 . . . 4 (𝐴N → (¬ 𝐴 = ∅ → ∅ ∈ 𝐴))
95, 8mpd 13 . . 3 (𝐴N → ∅ ∈ 𝐴)
101, 9jca 306 . 2 (𝐴N → (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
11 nndceq0 4665 . . . . . 6 (𝐴 ∈ ω → DECID 𝐴 = ∅)
12 df-dc 836 . . . . . 6 (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1311, 12sylib 122 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1413anim1i 340 . . . 4 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
15 ancom 266 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
16 andi 819 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1715, 16bitr3i 186 . . . 4 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1814, 17sylib 122 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
19 noel 3463 . . . . . . . . 9 ¬ ∅ ∈ ∅
20 eleq2 2268 . . . . . . . . 9 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
2119, 20mtbiri 676 . . . . . . . 8 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
2221pm2.21d 620 . . . . . . 7 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴N))
2322impcom 125 . . . . . 6 ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N)
2423a1i 9 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N))
25 df-ne 2376 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
26 elni 7420 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2726simplbi2 385 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴N))
2825, 27biimtrrid 153 . . . . . 6 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → 𝐴N))
2928adantld 278 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴N))
3024, 29jaod 718 . . . 4 (𝐴 ∈ ω → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3130adantr 276 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3218, 31mpd 13 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 𝐴N)
3310, 32impbii 126 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wne 2375  c0 3459  ωcom 4637  Ncnpi 7384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638  df-ni 7416
This theorem is referenced by:  addclpi  7439  mulclpi  7440  mulcanpig  7447  addnidpig  7448  ltexpi  7449  ltmpig  7451  nnppipi  7455  archnqq  7529  enq0tr  7546
  Copyright terms: Public domain W3C validator