ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni2 GIF version

Theorem elni2 7381
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 pinn 7376 . . 3 (𝐴N𝐴 ∈ ω)
2 0npi 7380 . . . . . 6 ¬ ∅ ∈ N
3 eleq1 2259 . . . . . 6 (𝐴 = ∅ → (𝐴N ↔ ∅ ∈ N))
42, 3mtbiri 676 . . . . 5 (𝐴 = ∅ → ¬ 𝐴N)
54con2i 628 . . . 4 (𝐴N → ¬ 𝐴 = ∅)
6 0elnn 4655 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
71, 6syl 14 . . . . 5 (𝐴N → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
87ord 725 . . . 4 (𝐴N → (¬ 𝐴 = ∅ → ∅ ∈ 𝐴))
95, 8mpd 13 . . 3 (𝐴N → ∅ ∈ 𝐴)
101, 9jca 306 . 2 (𝐴N → (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
11 nndceq0 4654 . . . . . 6 (𝐴 ∈ ω → DECID 𝐴 = ∅)
12 df-dc 836 . . . . . 6 (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1311, 12sylib 122 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1413anim1i 340 . . . 4 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
15 ancom 266 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
16 andi 819 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1715, 16bitr3i 186 . . . 4 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1814, 17sylib 122 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
19 noel 3454 . . . . . . . . 9 ¬ ∅ ∈ ∅
20 eleq2 2260 . . . . . . . . 9 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
2119, 20mtbiri 676 . . . . . . . 8 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
2221pm2.21d 620 . . . . . . 7 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴N))
2322impcom 125 . . . . . 6 ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N)
2423a1i 9 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N))
25 df-ne 2368 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
26 elni 7375 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2726simplbi2 385 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴N))
2825, 27biimtrrid 153 . . . . . 6 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → 𝐴N))
2928adantld 278 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴N))
3024, 29jaod 718 . . . 4 (𝐴 ∈ ω → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3130adantr 276 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3218, 31mpd 13 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 𝐴N)
3310, 32impbii 126 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  c0 3450  ωcom 4626  Ncnpi 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-ni 7371
This theorem is referenced by:  addclpi  7394  mulclpi  7395  mulcanpig  7402  addnidpig  7403  ltexpi  7404  ltmpig  7406  nnppipi  7410  archnqq  7484  enq0tr  7501
  Copyright terms: Public domain W3C validator