Proof of Theorem elni2
Step | Hyp | Ref
| Expression |
1 | | pinn 7250 |
. . 3
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
2 | | 0npi 7254 |
. . . . . 6
⊢ ¬
∅ ∈ N |
3 | | eleq1 2229 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ∈ N ↔
∅ ∈ N)) |
4 | 2, 3 | mtbiri 665 |
. . . . 5
⊢ (𝐴 = ∅ → ¬ 𝐴 ∈
N) |
5 | 4 | con2i 617 |
. . . 4
⊢ (𝐴 ∈ N →
¬ 𝐴 =
∅) |
6 | | 0elnn 4596 |
. . . . . 6
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
7 | 1, 6 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ N →
(𝐴 = ∅ ∨ ∅
∈ 𝐴)) |
8 | 7 | ord 714 |
. . . 4
⊢ (𝐴 ∈ N →
(¬ 𝐴 = ∅ →
∅ ∈ 𝐴)) |
9 | 5, 8 | mpd 13 |
. . 3
⊢ (𝐴 ∈ N →
∅ ∈ 𝐴) |
10 | 1, 9 | jca 304 |
. 2
⊢ (𝐴 ∈ N →
(𝐴 ∈ ω ∧
∅ ∈ 𝐴)) |
11 | | nndceq0 4595 |
. . . . . 6
⊢ (𝐴 ∈ ω →
DECID 𝐴 =
∅) |
12 | | df-dc 825 |
. . . . . 6
⊢
(DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
13 | 11, 12 | sylib 121 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
14 | 13 | anim1i 338 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴)) |
15 | | ancom 264 |
. . . . 5
⊢ ((∅
∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴)) |
16 | | andi 808 |
. . . . 5
⊢ ((∅
∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅))) |
17 | 15, 16 | bitr3i 185 |
. . . 4
⊢ (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴) ↔ ((∅ ∈
𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅))) |
18 | 14, 17 | sylib 121 |
. . 3
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → ((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅))) |
19 | | noel 3413 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ∅ |
20 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (∅
∈ 𝐴 ↔ ∅
∈ ∅)) |
21 | 19, 20 | mtbiri 665 |
. . . . . . . 8
⊢ (𝐴 = ∅ → ¬ ∅
∈ 𝐴) |
22 | 21 | pm2.21d 609 |
. . . . . . 7
⊢ (𝐴 = ∅ → (∅
∈ 𝐴 → 𝐴 ∈
N)) |
23 | 22 | impcom 124 |
. . . . . 6
⊢ ((∅
∈ 𝐴 ∧ 𝐴 = ∅) → 𝐴 ∈
N) |
24 | 23 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ ω → ((∅
∈ 𝐴 ∧ 𝐴 = ∅) → 𝐴 ∈
N)) |
25 | | df-ne 2337 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
26 | | elni 7249 |
. . . . . . . 8
⊢ (𝐴 ∈ N ↔
(𝐴 ∈ ω ∧
𝐴 ≠
∅)) |
27 | 26 | simplbi2 383 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴 ∈
N)) |
28 | 25, 27 | syl5bir 152 |
. . . . . 6
⊢ (𝐴 ∈ ω → (¬
𝐴 = ∅ → 𝐴 ∈
N)) |
29 | 28 | adantld 276 |
. . . . 5
⊢ (𝐴 ∈ ω → ((∅
∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈
N)) |
30 | 24, 29 | jaod 707 |
. . . 4
⊢ (𝐴 ∈ ω →
(((∅ ∈ 𝐴 ∧
𝐴 = ∅) ∨ (∅
∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴 ∈
N)) |
31 | 30 | adantr 274 |
. . 3
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → (((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴 ∈
N)) |
32 | 18, 31 | mpd 13 |
. 2
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → 𝐴 ∈
N) |
33 | 10, 32 | impbii 125 |
1
⊢ (𝐴 ∈ N ↔
(𝐴 ∈ ω ∧
∅ ∈ 𝐴)) |