Proof of Theorem elni2
| Step | Hyp | Ref
| Expression |
| 1 | | pinn 7376 |
. . 3
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
| 2 | | 0npi 7380 |
. . . . . 6
⊢ ¬
∅ ∈ N |
| 3 | | eleq1 2259 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ∈ N ↔
∅ ∈ N)) |
| 4 | 2, 3 | mtbiri 676 |
. . . . 5
⊢ (𝐴 = ∅ → ¬ 𝐴 ∈
N) |
| 5 | 4 | con2i 628 |
. . . 4
⊢ (𝐴 ∈ N →
¬ 𝐴 =
∅) |
| 6 | | 0elnn 4655 |
. . . . . 6
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
| 7 | 1, 6 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ N →
(𝐴 = ∅ ∨ ∅
∈ 𝐴)) |
| 8 | 7 | ord 725 |
. . . 4
⊢ (𝐴 ∈ N →
(¬ 𝐴 = ∅ →
∅ ∈ 𝐴)) |
| 9 | 5, 8 | mpd 13 |
. . 3
⊢ (𝐴 ∈ N →
∅ ∈ 𝐴) |
| 10 | 1, 9 | jca 306 |
. 2
⊢ (𝐴 ∈ N →
(𝐴 ∈ ω ∧
∅ ∈ 𝐴)) |
| 11 | | nndceq0 4654 |
. . . . . 6
⊢ (𝐴 ∈ ω →
DECID 𝐴 =
∅) |
| 12 | | df-dc 836 |
. . . . . 6
⊢
(DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
| 13 | 11, 12 | sylib 122 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
| 14 | 13 | anim1i 340 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴)) |
| 15 | | ancom 266 |
. . . . 5
⊢ ((∅
∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴)) |
| 16 | | andi 819 |
. . . . 5
⊢ ((∅
∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅))) |
| 17 | 15, 16 | bitr3i 186 |
. . . 4
⊢ (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈
𝐴) ↔ ((∅ ∈
𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅))) |
| 18 | 14, 17 | sylib 122 |
. . 3
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → ((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅))) |
| 19 | | noel 3454 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ∅ |
| 20 | | eleq2 2260 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (∅
∈ 𝐴 ↔ ∅
∈ ∅)) |
| 21 | 19, 20 | mtbiri 676 |
. . . . . . . 8
⊢ (𝐴 = ∅ → ¬ ∅
∈ 𝐴) |
| 22 | 21 | pm2.21d 620 |
. . . . . . 7
⊢ (𝐴 = ∅ → (∅
∈ 𝐴 → 𝐴 ∈
N)) |
| 23 | 22 | impcom 125 |
. . . . . 6
⊢ ((∅
∈ 𝐴 ∧ 𝐴 = ∅) → 𝐴 ∈
N) |
| 24 | 23 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ ω → ((∅
∈ 𝐴 ∧ 𝐴 = ∅) → 𝐴 ∈
N)) |
| 25 | | df-ne 2368 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
| 26 | | elni 7375 |
. . . . . . . 8
⊢ (𝐴 ∈ N ↔
(𝐴 ∈ ω ∧
𝐴 ≠
∅)) |
| 27 | 26 | simplbi2 385 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴 ∈
N)) |
| 28 | 25, 27 | biimtrrid 153 |
. . . . . 6
⊢ (𝐴 ∈ ω → (¬
𝐴 = ∅ → 𝐴 ∈
N)) |
| 29 | 28 | adantld 278 |
. . . . 5
⊢ (𝐴 ∈ ω → ((∅
∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈
N)) |
| 30 | 24, 29 | jaod 718 |
. . . 4
⊢ (𝐴 ∈ ω →
(((∅ ∈ 𝐴 ∧
𝐴 = ∅) ∨ (∅
∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴 ∈
N)) |
| 31 | 30 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → (((∅
∈ 𝐴 ∧ 𝐴 = ∅) ∨ (∅ ∈
𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴 ∈
N)) |
| 32 | 18, 31 | mpd 13 |
. 2
⊢ ((𝐴 ∈ ω ∧ ∅
∈ 𝐴) → 𝐴 ∈
N) |
| 33 | 10, 32 | impbii 126 |
1
⊢ (𝐴 ∈ N ↔
(𝐴 ∈ ω ∧
∅ ∈ 𝐴)) |