Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > niex | GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . 2 ⊢ ω ∈ V | |
2 | df-ni 7266 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 3253 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 3179 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 4127 | 1 ⊢ N ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∅c0 3414 {csn 3583 ωcom 4574 Ncnpi 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-int 3832 df-iom 4575 df-ni 7266 |
This theorem is referenced by: enqex 7322 nqex 7325 enq0ex 7401 nq0ex 7402 |
Copyright terms: Public domain | W3C validator |