| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > niex | GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4630 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 7388 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 3290 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3216 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 4172 | 1 ⊢ N ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ∅c0 3451 {csn 3623 ωcom 4627 Ncnpi 7356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-int 3876 df-iom 4628 df-ni 7388 |
| This theorem is referenced by: enqex 7444 nqex 7447 enq0ex 7523 nq0ex 7524 |
| Copyright terms: Public domain | W3C validator |