| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > niex | GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4659 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 7452 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 3307 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3233 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 4198 | 1 ⊢ N ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 Vcvv 2776 ∖ cdif 3171 ∅c0 3468 {csn 3643 ωcom 4656 Ncnpi 7420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-int 3900 df-iom 4657 df-ni 7452 |
| This theorem is referenced by: enqex 7508 nqex 7511 enq0ex 7587 nq0ex 7588 |
| Copyright terms: Public domain | W3C validator |