![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > niex | GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4626 | . 2 ⊢ ω ∈ V | |
2 | df-ni 7366 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 3286 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 3212 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 4168 | 1 ⊢ N ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∅c0 3447 {csn 3619 ωcom 4623 Ncnpi 7334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-int 3872 df-iom 4624 df-ni 7366 |
This theorem is referenced by: enqex 7422 nqex 7425 enq0ex 7501 nq0ex 7502 |
Copyright terms: Public domain | W3C validator |