| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > niex | GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4640 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 7416 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 3298 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3224 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 4181 | 1 ⊢ N ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 ∅c0 3459 {csn 3632 ωcom 4637 Ncnpi 7384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-int 3885 df-iom 4638 df-ni 7416 |
| This theorem is referenced by: enqex 7472 nqex 7475 enq0ex 7551 nq0ex 7552 |
| Copyright terms: Public domain | W3C validator |