| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > niex | GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4641 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 7417 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 3299 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3225 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 4182 | 1 ⊢ N ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 Vcvv 2772 ∖ cdif 3163 ∅c0 3460 {csn 3633 ωcom 4638 Ncnpi 7385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-int 3886 df-iom 4639 df-ni 7417 |
| This theorem is referenced by: enqex 7473 nqex 7476 enq0ex 7552 nq0ex 7553 |
| Copyright terms: Public domain | W3C validator |