Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > niex | GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4570 | . 2 ⊢ ω ∈ V | |
2 | df-ni 7245 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 3248 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 3174 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 4120 | 1 ⊢ N ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∅c0 3409 {csn 3576 ωcom 4567 Ncnpi 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-int 3825 df-iom 4568 df-ni 7245 |
This theorem is referenced by: enqex 7301 nqex 7304 enq0ex 7380 nq0ex 7381 |
Copyright terms: Public domain | W3C validator |