ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex GIF version

Theorem niex 7313
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex N ∈ V

Proof of Theorem niex
StepHypRef Expression
1 omex 4594 . 2 ω ∈ V
2 df-ni 7305 . . 3 N = (ω ∖ {∅})
3 difss 3263 . . 3 (ω ∖ {∅}) ⊆ ω
42, 3eqsstri 3189 . 2 N ⊆ ω
51, 4ssexi 4143 1 N ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2739  cdif 3128  c0 3424  {csn 3594  ωcom 4591  Ncnpi 7273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-int 3847  df-iom 4592  df-ni 7305
This theorem is referenced by:  enqex  7361  nqex  7364  enq0ex  7440  nq0ex  7441
  Copyright terms: Public domain W3C validator