| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > niex | GIF version | ||
| Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| niex | ⊢ N ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4685 | . 2 ⊢ ω ∈ V | |
| 2 | df-ni 7491 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 3 | difss 3330 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 4 | 2, 3 | eqsstri 3256 | . 2 ⊢ N ⊆ ω |
| 5 | 1, 4 | ssexi 4222 | 1 ⊢ N ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∅c0 3491 {csn 3666 ωcom 4682 Ncnpi 7459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-int 3924 df-iom 4683 df-ni 7491 |
| This theorem is referenced by: enqex 7547 nqex 7550 enq0ex 7626 nq0ex 7627 |
| Copyright terms: Public domain | W3C validator |