Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elni | GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7266 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
3 | eldifsn 3710 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ≠ wne 2340 ∖ cdif 3118 ∅c0 3414 {csn 3583 ωcom 4574 Ncnpi 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-sn 3589 df-ni 7266 |
This theorem is referenced by: 0npi 7275 elni2 7276 1pi 7277 addclpi 7289 mulclpi 7290 nlt1pig 7303 indpi 7304 nqnq0pi 7400 prarloclemcalc 7464 |
Copyright terms: Public domain | W3C validator |