| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elni | GIF version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7388 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 3750 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 ∅c0 3451 {csn 3623 ωcom 4627 Ncnpi 7356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-sn 3629 df-ni 7388 |
| This theorem is referenced by: 0npi 7397 elni2 7398 1pi 7399 addclpi 7411 mulclpi 7412 nlt1pig 7425 indpi 7426 nqnq0pi 7522 prarloclemcalc 7586 |
| Copyright terms: Public domain | W3C validator |