![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elni | GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7364 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
3 | eldifsn 3745 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3150 ∅c0 3446 {csn 3618 ωcom 4622 Ncnpi 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-sn 3624 df-ni 7364 |
This theorem is referenced by: 0npi 7373 elni2 7374 1pi 7375 addclpi 7387 mulclpi 7388 nlt1pig 7401 indpi 7402 nqnq0pi 7498 prarloclemcalc 7562 |
Copyright terms: Public domain | W3C validator |