ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni GIF version

Theorem elni 7375
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 7371 . . 3 N = (ω ∖ {∅})
21eleq2i 2263 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 3749 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 184 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  wne 2367  cdif 3154  c0 3450  {csn 3622  ωcom 4626  Ncnpi 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-sn 3628  df-ni 7371
This theorem is referenced by:  0npi  7380  elni2  7381  1pi  7382  addclpi  7394  mulclpi  7395  nlt1pig  7408  indpi  7409  nqnq0pi  7505  prarloclemcalc  7569
  Copyright terms: Public domain W3C validator