ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni GIF version

Theorem elni 7503
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 7499 . . 3 N = (ω ∖ {∅})
21eleq2i 2296 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 3795 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 184 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2200  wne 2400  cdif 3194  c0 3491  {csn 3666  ωcom 4682  Ncnpi 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-sn 3672  df-ni 7499
This theorem is referenced by:  0npi  7508  elni2  7509  1pi  7510  addclpi  7522  mulclpi  7523  nlt1pig  7536  indpi  7537  nqnq0pi  7633  prarloclemcalc  7697
  Copyright terms: Public domain W3C validator