Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elni | GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7245 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
3 | eldifsn 3703 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ≠ wne 2336 ∖ cdif 3113 ∅c0 3409 {csn 3576 ωcom 4567 Ncnpi 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-sn 3582 df-ni 7245 |
This theorem is referenced by: 0npi 7254 elni2 7255 1pi 7256 addclpi 7268 mulclpi 7269 nlt1pig 7282 indpi 7283 nqnq0pi 7379 prarloclemcalc 7443 |
Copyright terms: Public domain | W3C validator |