| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elni | GIF version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7479 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 3794 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 ∅c0 3491 {csn 3666 ωcom 4679 Ncnpi 7447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-sn 3672 df-ni 7479 |
| This theorem is referenced by: 0npi 7488 elni2 7489 1pi 7490 addclpi 7502 mulclpi 7503 nlt1pig 7516 indpi 7517 nqnq0pi 7613 prarloclemcalc 7677 |
| Copyright terms: Public domain | W3C validator |