| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elni | GIF version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7432 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 3765 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ≠ wne 2377 ∖ cdif 3167 ∅c0 3464 {csn 3637 ωcom 4645 Ncnpi 7400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-sn 3643 df-ni 7432 |
| This theorem is referenced by: 0npi 7441 elni2 7442 1pi 7443 addclpi 7455 mulclpi 7456 nlt1pig 7469 indpi 7470 nqnq0pi 7566 prarloclemcalc 7630 |
| Copyright terms: Public domain | W3C validator |