ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3expib GIF version

Theorem 3expib 1230
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3expib (𝜑 → ((𝜓𝜒) → 𝜃))

Proof of Theorem 3expib
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213exp 1226 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32impd 254 1 (𝜑 → ((𝜓𝜒) → 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3anidm12  1329  mob  2985  eqbrrdva  4892  funimaexglem  5404  fco  5491  f1oiso2  5957  caovimo  6205  smoel2  6455  nnaword  6665  3ecoptocl  6779  rex2dom  6979  sbthlemi10  7141  distrnq0  7654  addassnq0  7657  prcdnql  7679  prcunqu  7680  genpdisj  7718  cauappcvgprlemrnd  7845  caucvgprlemrnd  7868  caucvgprprlemrnd  7896  nn0n0n1ge2b  9534  fzind  9570  icoshft  10194  fzen  10247  seq3coll  11072  shftuz  11336  mulgcd  12545  algcvga  12581  lcmneg  12604  isnmgm  13401  gsummgmpropd  13435  issgrpd  13453  iscmnd  13843  unitmulclb  14086  rmodislmodlem  14322  rmodislmod  14323  blssps  15109  blss  15110  metcnp3  15193  sincosq1sgn  15508  sincosq2sgn  15509  sincosq3sgn  15510  sincosq4sgn  15511  iswlkg  16050
  Copyright terms: Public domain W3C validator