ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3expib GIF version

Theorem 3expib 1208
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3expib (𝜑 → ((𝜓𝜒) → 𝜃))

Proof of Theorem 3expib
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213exp 1204 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32impd 254 1 (𝜑 → ((𝜓𝜒) → 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anidm12  1306  mob  2946  eqbrrdva  4837  funimaexglem  5342  fco  5426  f1oiso2  5877  caovimo  6121  smoel2  6370  nnaword  6578  3ecoptocl  6692  sbthlemi10  7041  distrnq0  7545  addassnq0  7548  prcdnql  7570  prcunqu  7571  genpdisj  7609  cauappcvgprlemrnd  7736  caucvgprlemrnd  7759  caucvgprprlemrnd  7787  nn0n0n1ge2b  9424  fzind  9460  icoshft  10084  fzen  10137  seq3coll  10953  shftuz  11001  mulgcd  12210  algcvga  12246  lcmneg  12269  isnmgm  13064  gsummgmpropd  13098  issgrpd  13116  iscmnd  13506  unitmulclb  13748  rmodislmodlem  13984  rmodislmod  13985  blssps  14771  blss  14772  metcnp3  14855  sincosq1sgn  15170  sincosq2sgn  15171  sincosq3sgn  15172  sincosq4sgn  15173
  Copyright terms: Public domain W3C validator