| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anidm12 1306 mob 2946 eqbrrdva 4837 funimaexglem 5342 fco 5426 f1oiso2 5877 caovimo 6121 smoel2 6370 nnaword 6578 3ecoptocl 6692 sbthlemi10 7041 distrnq0 7545 addassnq0 7548 prcdnql 7570 prcunqu 7571 genpdisj 7609 cauappcvgprlemrnd 7736 caucvgprlemrnd 7759 caucvgprprlemrnd 7787 nn0n0n1ge2b 9424 fzind 9460 icoshft 10084 fzen 10137 seq3coll 10953 shftuz 11001 mulgcd 12210 algcvga 12246 lcmneg 12269 isnmgm 13064 gsummgmpropd 13098 issgrpd 13116 iscmnd 13506 unitmulclb 13748 rmodislmodlem 13984 rmodislmod 13985 blssps 14771 blss 14772 metcnp3 14855 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 |
| Copyright terms: Public domain | W3C validator |