| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1226 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anidm12 1329 mob 2985 eqbrrdva 4892 funimaexglem 5404 fco 5491 f1oiso2 5957 caovimo 6205 smoel2 6455 nnaword 6665 3ecoptocl 6779 rex2dom 6979 sbthlemi10 7141 distrnq0 7654 addassnq0 7657 prcdnql 7679 prcunqu 7680 genpdisj 7718 cauappcvgprlemrnd 7845 caucvgprlemrnd 7868 caucvgprprlemrnd 7896 nn0n0n1ge2b 9534 fzind 9570 icoshft 10194 fzen 10247 seq3coll 11072 shftuz 11336 mulgcd 12545 algcvga 12581 lcmneg 12604 isnmgm 13401 gsummgmpropd 13435 issgrpd 13453 iscmnd 13843 unitmulclb 14086 rmodislmodlem 14322 rmodislmod 14323 blssps 15109 blss 15110 metcnp3 15193 sincosq1sgn 15508 sincosq2sgn 15509 sincosq3sgn 15510 sincosq4sgn 15511 iswlkg 16050 |
| Copyright terms: Public domain | W3C validator |