| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) | 
| Ref | Expression | 
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3anidm12 1306 mob 2946 eqbrrdva 4836 funimaexglem 5341 fco 5423 f1oiso2 5874 caovimo 6117 smoel2 6361 nnaword 6569 3ecoptocl 6683 sbthlemi10 7032 distrnq0 7526 addassnq0 7529 prcdnql 7551 prcunqu 7552 genpdisj 7590 cauappcvgprlemrnd 7717 caucvgprlemrnd 7740 caucvgprprlemrnd 7768 nn0n0n1ge2b 9405 fzind 9441 icoshft 10065 fzen 10118 seq3coll 10934 shftuz 10982 mulgcd 12183 algcvga 12219 lcmneg 12242 isnmgm 13003 gsummgmpropd 13037 issgrpd 13055 iscmnd 13428 unitmulclb 13670 rmodislmodlem 13906 rmodislmod 13907 blssps 14663 blss 14664 metcnp3 14747 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 | 
| Copyright terms: Public domain | W3C validator |