| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anidm12 1308 mob 2956 eqbrrdva 4852 funimaexglem 5362 fco 5447 f1oiso2 5903 caovimo 6147 smoel2 6396 nnaword 6604 3ecoptocl 6718 rex2dom 6917 sbthlemi10 7075 distrnq0 7579 addassnq0 7582 prcdnql 7604 prcunqu 7605 genpdisj 7643 cauappcvgprlemrnd 7770 caucvgprlemrnd 7793 caucvgprprlemrnd 7821 nn0n0n1ge2b 9459 fzind 9495 icoshft 10119 fzen 10172 seq3coll 10994 shftuz 11172 mulgcd 12381 algcvga 12417 lcmneg 12440 isnmgm 13236 gsummgmpropd 13270 issgrpd 13288 iscmnd 13678 unitmulclb 13920 rmodislmodlem 14156 rmodislmod 14157 blssps 14943 blss 14944 metcnp3 15027 sincosq1sgn 15342 sincosq2sgn 15343 sincosq3sgn 15344 sincosq4sgn 15345 |
| Copyright terms: Public domain | W3C validator |