| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anidm12 1306 mob 2946 eqbrrdva 4837 funimaexglem 5342 fco 5426 f1oiso2 5877 caovimo 6121 smoel2 6370 nnaword 6578 3ecoptocl 6692 sbthlemi10 7041 distrnq0 7543 addassnq0 7546 prcdnql 7568 prcunqu 7569 genpdisj 7607 cauappcvgprlemrnd 7734 caucvgprlemrnd 7757 caucvgprprlemrnd 7785 nn0n0n1ge2b 9422 fzind 9458 icoshft 10082 fzen 10135 seq3coll 10951 shftuz 10999 mulgcd 12208 algcvga 12244 lcmneg 12267 isnmgm 13062 gsummgmpropd 13096 issgrpd 13114 iscmnd 13504 unitmulclb 13746 rmodislmodlem 13982 rmodislmod 13983 blssps 14747 blss 14748 metcnp3 14831 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 |
| Copyright terms: Public domain | W3C validator |