| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1207 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: 3anidm12 1310 mob 2965 eqbrrdva 4869 funimaexglem 5380 fco 5465 f1oiso2 5924 caovimo 6170 smoel2 6419 nnaword 6627 3ecoptocl 6741 rex2dom 6941 sbthlemi10 7101 distrnq0 7614 addassnq0 7617 prcdnql 7639 prcunqu 7640 genpdisj 7678 cauappcvgprlemrnd 7805 caucvgprlemrnd 7828 caucvgprprlemrnd 7856 nn0n0n1ge2b 9494 fzind 9530 icoshft 10154 fzen 10207 seq3coll 11031 shftuz 11294 mulgcd 12503 algcvga 12539 lcmneg 12562 isnmgm 13359 gsummgmpropd 13393 issgrpd 13411 iscmnd 13801 unitmulclb 14043 rmodislmodlem 14279 rmodislmod 14280 blssps 15066 blss 15067 metcnp3 15150 sincosq1sgn 15465 sincosq2sgn 15466 sincosq3sgn 15467 sincosq4sgn 15468 |
| Copyright terms: Public domain | W3C validator |