Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expib | GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1192 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 252 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3anidm12 1285 mob 2908 eqbrrdva 4774 funimaexglem 5271 fco 5353 f1oiso2 5795 caovimo 6035 smoel2 6271 nnaword 6479 3ecoptocl 6590 sbthlemi10 6931 distrnq0 7400 addassnq0 7403 prcdnql 7425 prcunqu 7426 genpdisj 7464 cauappcvgprlemrnd 7591 caucvgprlemrnd 7614 caucvgprprlemrnd 7642 nn0n0n1ge2b 9270 fzind 9306 icoshft 9926 fzen 9978 seq3coll 10755 shftuz 10759 mulgcd 11949 algcvga 11983 lcmneg 12006 isnmgm 12591 blssps 13067 blss 13068 metcnp3 13151 sincosq1sgn 13387 sincosq2sgn 13388 sincosq3sgn 13389 sincosq4sgn 13390 |
Copyright terms: Public domain | W3C validator |