Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcl GIF version

Theorem fovcl 5842
 Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.)
Hypothesis
Ref Expression
fovcl.1 𝐹:(𝑅 × 𝑆)⟶𝐶
Assertion
Ref Expression
fovcl ((𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fovcl.1 . . 3 𝐹:(𝑅 × 𝑆)⟶𝐶
2 ffnov 5841 . . . 4 (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶))
32simprbi 271 . . 3 (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶)
41, 3ax-mp 5 . 2 𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶
5 oveq1 5747 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
65eleq1d 2184 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶))
7 oveq2 5748 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87eleq1d 2184 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))
96, 8rspc2v 2774 . 2 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶))
104, 9mpi 15 1 ((𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1314   ∈ wcel 1463  ∀wral 2391   × cxp 4505   Fn wfn 5086  ⟶wf 5087  (class class class)co 5740 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743 This theorem is referenced by:  xaddcl  9583  ixxssxr  9623  fzof  9861  elfzoelz  9864  fzoval  9865  addcncntoplem  12615
 Copyright terms: Public domain W3C validator