ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id GIF version

Theorem gcd0id 10750
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 10732 . . . 4 (0 gcd 0) = 0
2 oveq2 5599 . . . 4 (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0))
3 fveq2 5253 . . . . 5 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
4 abs0 10318 . . . . 5 (abs‘0) = 0
53, 4syl6eq 2131 . . . 4 (𝑁 = 0 → (abs‘𝑁) = 0)
61, 2, 53eqtr4a 2141 . . 3 (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁))
76adantl 271 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
8 df-ne 2250 . . 3 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
9 0z 8657 . . . . . . . 8 0 ∈ ℤ
10 gcddvds 10735 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
119, 10mpan 415 . . . . . . 7 (𝑁 ∈ ℤ → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
1211simprd 112 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∥ 𝑁)
1312adantr 270 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁)
14 gcdcl 10738 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) ∈ ℕ0)
159, 14mpan 415 . . . . . . . 8 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℕ0)
1615nn0zd 8762 . . . . . . 7 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℤ)
17 dvdsleabs 10626 . . . . . . 7 (((0 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1816, 17syl3an1 1203 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
19183anidm12 1227 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
2013, 19mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁))
21 zabscl 10346 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
22 dvds0 10591 . . . . . . . 8 ((abs‘𝑁) ∈ ℤ → (abs‘𝑁) ∥ 0)
2321, 22syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 0)
24 iddvds 10589 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
25 absdvdsb 10594 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2625anidms 389 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2724, 26mpbid 145 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 𝑁)
2823, 27jca 300 . . . . . 6 (𝑁 ∈ ℤ → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
2928adantr 270 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
30 eqid 2083 . . . . . . . . 9 0 = 0
3130biantrur 297 . . . . . . . 8 (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0))
3231necon3abii 2285 . . . . . . 7 (𝑁 ≠ 0 ↔ ¬ (0 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 10736 . . . . . . . . . 10 ((((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧ 𝑁 = 0)) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3433ex 113 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
359, 34mp3an2 1257 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3621, 35mpancom 413 . . . . . . 7 (𝑁 ∈ ℤ → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3732, 36syl5bi 150 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ≠ 0 → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3837imp 122 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3929, 38mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁))
4016zred 8764 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℝ)
4121zred 8764 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4240, 41letri3d 7503 . . . . 5 (𝑁 ∈ ℤ → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4342adantr 270 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4420, 39, 43mpbir2and 886 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁))
458, 44sylan2br 282 . 2 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
46 zdceq 8718 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
479, 46mpan2 416 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
48 exmiddc 778 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
4947, 48syl 14 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
507, 45, 49mpjaodan 745 1 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 776  w3a 920   = wceq 1285  wcel 1434  wne 2249   class class class wbr 3811  cfv 4969  (class class class)co 5591  0cc0 7253  cle 7426  0cn0 8565  cz 8646  abscabs 10257  cdvds 10576   gcd cgcd 10718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367  ax-caucvg 7368
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-sup 6586  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-q 9000  df-rp 9030  df-fz 9320  df-fzo 9444  df-fl 9566  df-mod 9619  df-iseq 9741  df-iexp 9792  df-cj 10103  df-re 10104  df-im 10105  df-rsqrt 10258  df-abs 10259  df-dvds 10577  df-gcd 10719
This theorem is referenced by:  gcdid0  10751  nn0gcdsq  10958  dfphi2  10976
  Copyright terms: Public domain W3C validator