ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id GIF version

Theorem gcd0id 11673
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 11655 . . . 4 (0 gcd 0) = 0
2 oveq2 5782 . . . 4 (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0))
3 fveq2 5421 . . . . 5 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
4 abs0 10837 . . . . 5 (abs‘0) = 0
53, 4syl6eq 2188 . . . 4 (𝑁 = 0 → (abs‘𝑁) = 0)
61, 2, 53eqtr4a 2198 . . 3 (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁))
76adantl 275 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
8 df-ne 2309 . . 3 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
9 0z 9072 . . . . . . . 8 0 ∈ ℤ
10 gcddvds 11658 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
119, 10mpan 420 . . . . . . 7 (𝑁 ∈ ℤ → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
1211simprd 113 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∥ 𝑁)
1312adantr 274 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁)
14 gcdcl 11661 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) ∈ ℕ0)
159, 14mpan 420 . . . . . . . 8 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℕ0)
1615nn0zd 9178 . . . . . . 7 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℤ)
17 dvdsleabs 11549 . . . . . . 7 (((0 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1816, 17syl3an1 1249 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
19183anidm12 1273 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
2013, 19mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁))
21 zabscl 10865 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
22 dvds0 11514 . . . . . . . 8 ((abs‘𝑁) ∈ ℤ → (abs‘𝑁) ∥ 0)
2321, 22syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 0)
24 iddvds 11512 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
25 absdvdsb 11517 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2625anidms 394 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2724, 26mpbid 146 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 𝑁)
2823, 27jca 304 . . . . . 6 (𝑁 ∈ ℤ → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
2928adantr 274 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
30 eqid 2139 . . . . . . . . 9 0 = 0
3130biantrur 301 . . . . . . . 8 (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0))
3231necon3abii 2344 . . . . . . 7 (𝑁 ≠ 0 ↔ ¬ (0 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 11659 . . . . . . . . . 10 ((((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧ 𝑁 = 0)) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3433ex 114 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
359, 34mp3an2 1303 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3621, 35mpancom 418 . . . . . . 7 (𝑁 ∈ ℤ → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3732, 36syl5bi 151 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ≠ 0 → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3837imp 123 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3929, 38mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁))
4016zred 9180 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℝ)
4121zred 9180 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4240, 41letri3d 7886 . . . . 5 (𝑁 ∈ ℤ → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4342adantr 274 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4420, 39, 43mpbir2and 928 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁))
458, 44sylan2br 286 . 2 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
46 zdceq 9133 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
479, 46mpan2 421 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
48 exmiddc 821 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
4947, 48syl 14 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
507, 45, 49mpjaodan 787 1 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  0cc0 7627  cle 7808  0cn0 8984  cz 9061  abscabs 10776  cdvds 11499   gcd cgcd 11641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-fl 10050  df-mod 10103  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-dvds 11500  df-gcd 11642
This theorem is referenced by:  gcdid0  11674  nn0gcdsq  11884  dfphi2  11902
  Copyright terms: Public domain W3C validator