ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id GIF version

Theorem gcd0id 11412
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 11394 . . . 4 (0 gcd 0) = 0
2 oveq2 5698 . . . 4 (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0))
3 fveq2 5340 . . . . 5 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
4 abs0 10622 . . . . 5 (abs‘0) = 0
53, 4syl6eq 2143 . . . 4 (𝑁 = 0 → (abs‘𝑁) = 0)
61, 2, 53eqtr4a 2153 . . 3 (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁))
76adantl 272 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
8 df-ne 2263 . . 3 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
9 0z 8859 . . . . . . . 8 0 ∈ ℤ
10 gcddvds 11397 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
119, 10mpan 416 . . . . . . 7 (𝑁 ∈ ℤ → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
1211simprd 113 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∥ 𝑁)
1312adantr 271 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁)
14 gcdcl 11400 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) ∈ ℕ0)
159, 14mpan 416 . . . . . . . 8 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℕ0)
1615nn0zd 8965 . . . . . . 7 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℤ)
17 dvdsleabs 11288 . . . . . . 7 (((0 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1816, 17syl3an1 1214 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
19183anidm12 1238 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
2013, 19mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁))
21 zabscl 10650 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
22 dvds0 11253 . . . . . . . 8 ((abs‘𝑁) ∈ ℤ → (abs‘𝑁) ∥ 0)
2321, 22syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 0)
24 iddvds 11251 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
25 absdvdsb 11256 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2625anidms 390 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2724, 26mpbid 146 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 𝑁)
2823, 27jca 301 . . . . . 6 (𝑁 ∈ ℤ → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
2928adantr 271 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
30 eqid 2095 . . . . . . . . 9 0 = 0
3130biantrur 298 . . . . . . . 8 (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0))
3231necon3abii 2298 . . . . . . 7 (𝑁 ≠ 0 ↔ ¬ (0 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 11398 . . . . . . . . . 10 ((((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧ 𝑁 = 0)) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3433ex 114 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
359, 34mp3an2 1268 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3621, 35mpancom 414 . . . . . . 7 (𝑁 ∈ ℤ → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3732, 36syl5bi 151 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ≠ 0 → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3837imp 123 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3929, 38mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁))
4016zred 8967 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℝ)
4121zred 8967 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4240, 41letri3d 7697 . . . . 5 (𝑁 ∈ ℤ → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4342adantr 271 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4420, 39, 43mpbir2and 893 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁))
458, 44sylan2br 283 . 2 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
46 zdceq 8920 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
479, 46mpan2 417 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
48 exmiddc 785 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
4947, 48syl 14 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
507, 45, 49mpjaodan 750 1 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 667  DECID wdc 783  w3a 927   = wceq 1296  wcel 1445  wne 2262   class class class wbr 3867  cfv 5049  (class class class)co 5690  0cc0 7447  cle 7620  0cn0 8771  cz 8848  abscabs 10561  cdvds 11238   gcd cgcd 11380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-fl 9826  df-mod 9879  df-iseq 10002  df-seq3 10003  df-exp 10086  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-dvds 11239  df-gcd 11381
This theorem is referenced by:  gcdid0  11413  nn0gcdsq  11620  dfphi2  11638
  Copyright terms: Public domain W3C validator