Proof of Theorem gcd0id
| Step | Hyp | Ref
 | Expression | 
| 1 |   | gcd0val 12127 | 
. . . 4
⊢ (0 gcd 0)
= 0 | 
| 2 |   | oveq2 5930 | 
. . . 4
⊢ (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0)) | 
| 3 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑁 = 0 → (abs‘𝑁) =
(abs‘0)) | 
| 4 |   | abs0 11223 | 
. . . . 5
⊢
(abs‘0) = 0 | 
| 5 | 3, 4 | eqtrdi 2245 | 
. . . 4
⊢ (𝑁 = 0 → (abs‘𝑁) = 0) | 
| 6 | 1, 2, 5 | 3eqtr4a 2255 | 
. . 3
⊢ (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁)) | 
| 7 | 6 | adantl 277 | 
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁)) | 
| 8 |   | df-ne 2368 | 
. . 3
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | 
| 9 |   | 0z 9337 | 
. . . . . . . 8
⊢ 0 ∈
ℤ | 
| 10 |   | gcddvds 12130 | 
. . . . . . . 8
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁)) | 
| 11 | 9, 10 | mpan 424 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ → ((0 gcd
𝑁) ∥ 0 ∧ (0 gcd
𝑁) ∥ 𝑁)) | 
| 12 | 11 | simprd 114 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → (0 gcd
𝑁) ∥ 𝑁) | 
| 13 | 12 | adantr 276 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁) | 
| 14 |   | gcdcl 12133 | 
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 gcd 𝑁) ∈
ℕ0) | 
| 15 | 9, 14 | mpan 424 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (0 gcd
𝑁) ∈
ℕ0) | 
| 16 | 15 | nn0zd 9446 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (0 gcd
𝑁) ∈
ℤ) | 
| 17 |   | dvdsleabs 12010 | 
. . . . . . 7
⊢ (((0 gcd
𝑁) ∈ ℤ ∧
𝑁 ∈ ℤ ∧
𝑁 ≠ 0) → ((0 gcd
𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁))) | 
| 18 | 16, 17 | syl3an1 1282 | 
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁))) | 
| 19 | 18 | 3anidm12 1306 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁))) | 
| 20 | 13, 19 | mpd 13 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁)) | 
| 21 |   | zabscl 11251 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℤ) | 
| 22 |   | dvds0 11971 | 
. . . . . . . 8
⊢
((abs‘𝑁)
∈ ℤ → (abs‘𝑁) ∥ 0) | 
| 23 | 21, 22 | syl 14 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∥
0) | 
| 24 |   | iddvds 11969 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | 
| 25 |   | absdvdsb 11974 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ 𝑁 ↔ (abs‘𝑁) ∥ 𝑁)) | 
| 26 | 25 | anidms 397 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (𝑁 ∥ 𝑁 ↔ (abs‘𝑁) ∥ 𝑁)) | 
| 27 | 24, 26 | mpbid 147 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∥ 𝑁) | 
| 28 | 23, 27 | jca 306 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ →
((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁)) | 
| 29 | 28 | adantr 276 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁)) | 
| 30 |   | eqid 2196 | 
. . . . . . . . 9
⊢ 0 =
0 | 
| 31 | 30 | biantrur 303 | 
. . . . . . . 8
⊢ (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0)) | 
| 32 | 31 | necon3abii 2403 | 
. . . . . . 7
⊢ (𝑁 ≠ 0 ↔ ¬ (0 = 0
∧ 𝑁 =
0)) | 
| 33 |   | dvdslegcd 12131 | 
. . . . . . . . . 10
⊢
((((abs‘𝑁)
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧
𝑁 = 0)) →
(((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))) | 
| 34 | 33 | ex 115 | 
. . . . . . . . 9
⊢
(((abs‘𝑁)
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧
𝑁 = 0) →
(((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 35 | 9, 34 | mp3an2 1336 | 
. . . . . . . 8
⊢
(((abs‘𝑁)
∈ ℤ ∧ 𝑁
∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 36 | 21, 35 | mpancom 422 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (¬ (0
= 0 ∧ 𝑁 = 0) →
(((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 37 | 32, 36 | biimtrid 152 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → (𝑁 ≠ 0 →
(((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 38 | 37 | imp 124 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(((abs‘𝑁) ∥ 0
∧ (abs‘𝑁) ∥
𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))) | 
| 39 | 29, 38 | mpd 13 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁)) | 
| 40 | 16 | zred 9448 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → (0 gcd
𝑁) ∈
ℝ) | 
| 41 | 21 | zred 9448 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℝ) | 
| 42 | 40, 41 | letri3d 8142 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → ((0 gcd
𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 43 | 42 | adantr 276 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁)))) | 
| 44 | 20, 39, 43 | mpbir2and 946 | 
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁)) | 
| 45 | 8, 44 | sylan2br 288 | 
. 2
⊢ ((𝑁 ∈ ℤ ∧ ¬
𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁)) | 
| 46 |   | zdceq 9401 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) | 
| 47 | 9, 46 | mpan2 425 | 
. . 3
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) | 
| 48 |   | exmiddc 837 | 
. . 3
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) | 
| 49 | 47, 48 | syl 14 | 
. 2
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) | 
| 50 | 7, 45, 49 | mpjaodan 799 | 
1
⊢ (𝑁 ∈ ℤ → (0 gcd
𝑁) = (abs‘𝑁)) |