ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id GIF version

Theorem gcd0id 12156
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 12137 . . . 4 (0 gcd 0) = 0
2 oveq2 5931 . . . 4 (𝑁 = 0 → (0 gcd 𝑁) = (0 gcd 0))
3 fveq2 5559 . . . . 5 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
4 abs0 11225 . . . . 5 (abs‘0) = 0
53, 4eqtrdi 2245 . . . 4 (𝑁 = 0 → (abs‘𝑁) = 0)
61, 2, 53eqtr4a 2255 . . 3 (𝑁 = 0 → (0 gcd 𝑁) = (abs‘𝑁))
76adantl 277 . 2 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
8 df-ne 2368 . . 3 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
9 0z 9339 . . . . . . . 8 0 ∈ ℤ
10 gcddvds 12140 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
119, 10mpan 424 . . . . . . 7 (𝑁 ∈ ℤ → ((0 gcd 𝑁) ∥ 0 ∧ (0 gcd 𝑁) ∥ 𝑁))
1211simprd 114 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∥ 𝑁)
1312adantr 276 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ∥ 𝑁)
14 gcdcl 12143 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) ∈ ℕ0)
159, 14mpan 424 . . . . . . . 8 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℕ0)
1615nn0zd 9448 . . . . . . 7 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℤ)
17 dvdsleabs 12012 . . . . . . 7 (((0 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
1816, 17syl3an1 1282 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
19183anidm12 1306 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) ∥ 𝑁 → (0 gcd 𝑁) ≤ (abs‘𝑁)))
2013, 19mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) ≤ (abs‘𝑁))
21 zabscl 11253 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
22 dvds0 11973 . . . . . . . 8 ((abs‘𝑁) ∈ ℤ → (abs‘𝑁) ∥ 0)
2321, 22syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 0)
24 iddvds 11971 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
25 absdvdsb 11976 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2625anidms 397 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁𝑁 ↔ (abs‘𝑁) ∥ 𝑁))
2724, 26mpbid 147 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∥ 𝑁)
2823, 27jca 306 . . . . . 6 (𝑁 ∈ ℤ → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
2928adantr 276 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁))
30 eqid 2196 . . . . . . . . 9 0 = 0
3130biantrur 303 . . . . . . . 8 (𝑁 = 0 ↔ (0 = 0 ∧ 𝑁 = 0))
3231necon3abii 2403 . . . . . . 7 (𝑁 ≠ 0 ↔ ¬ (0 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 12141 . . . . . . . . . 10 ((((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (0 = 0 ∧ 𝑁 = 0)) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3433ex 115 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
359, 34mp3an2 1336 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3621, 35mpancom 422 . . . . . . 7 (𝑁 ∈ ℤ → (¬ (0 = 0 ∧ 𝑁 = 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3732, 36biimtrid 152 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 ≠ 0 → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁))))
3837imp 124 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑁) ∥ 0 ∧ (abs‘𝑁) ∥ 𝑁) → (abs‘𝑁) ≤ (0 gcd 𝑁)))
3929, 38mpd 13 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ≤ (0 gcd 𝑁))
4016zred 9450 . . . . . 6 (𝑁 ∈ ℤ → (0 gcd 𝑁) ∈ ℝ)
4121zred 9450 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4240, 41letri3d 8144 . . . . 5 (𝑁 ∈ ℤ → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4342adantr 276 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((0 gcd 𝑁) = (abs‘𝑁) ↔ ((0 gcd 𝑁) ≤ (abs‘𝑁) ∧ (abs‘𝑁) ≤ (0 gcd 𝑁))))
4420, 39, 43mpbir2and 946 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (0 gcd 𝑁) = (abs‘𝑁))
458, 44sylan2br 288 . 2 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (0 gcd 𝑁) = (abs‘𝑁))
46 zdceq 9403 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
479, 46mpan2 425 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
48 exmiddc 837 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
4947, 48syl 14 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
507, 45, 49mpjaodan 799 1 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  (class class class)co 5923  0cc0 7881  cle 8064  0cn0 9251  cz 9328  abscabs 11164  cdvds 11954   gcd cgcd 12130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-sup 7051  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-dvds 11955  df-gcd 12131
This theorem is referenced by:  gcdid0  12157  nn0gcdsq  12378  dfphi2  12398
  Copyright terms: Public domain W3C validator