| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3eqtrri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 | 
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 | 
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2217 | . 2 ⊢ 𝐴 = 𝐶 | 
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2218 | 1 ⊢ 𝐷 = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: resindm 4988 dfdm2 5204 cofunex2g 6167 df1st2 6277 df2nd2 6278 enq0enq 7498 dfn2 9262 9p1e10 9459 0.999... 11686 pockthi 12527 sincosq3sgn 15064 sincosq4sgn 15065 | 
| Copyright terms: Public domain | W3C validator |