| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtrri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2227 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtri.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2228 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: resindm 5010 dfdm2 5226 cofunex2g 6208 df1st2 6318 df2nd2 6319 enq0enq 7564 dfn2 9328 9p1e10 9526 0.999... 11907 pockthi 12756 sincosq3sgn 15375 sincosq4sgn 15376 |
| Copyright terms: Public domain | W3C validator |