ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 GIF version

Theorem df2nd2 6273
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df2nd2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6211 . . . . 5 2nd :V–onto→V
2 fofn 5478 . . . . 5 (2nd :V–onto→V → 2nd Fn V)
3 dffn5im 5602 . . . . 5 (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd𝑤)))
41, 2, 3mp2b 8 . . . 4 2nd = (𝑤 ∈ V ↦ (2nd𝑤))
5 mptv 4126 . . . 4 (𝑤 ∈ V ↦ (2nd𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
64, 5eqtri 2214 . . 3 2nd = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
76reseq1i 4938 . 2 (2nd ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V))
8 resopab 4986 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))}
9 vex 2763 . . . . 5 𝑥 ∈ V
10 vex 2763 . . . . 5 𝑦 ∈ V
119, 10op2ndd 6202 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (2nd𝑤) = 𝑦)
1211eqeq2d 2205 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (2nd𝑤) ↔ 𝑧 = 𝑦))
1312dfoprab3 6244 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
147, 8, 133eqtrri 2219 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cop 3621  {copab 4089  cmpt 4090   × cxp 4657  cres 4661   Fn wfn 5249  ontowfo 5252  cfv 5254  {coprab 5919  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-oprab 5922  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator