| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2nd2 | GIF version | ||
| Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2nd2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 6251 | . . . . 5 ⊢ 2nd :V–onto→V | |
| 2 | fofn 5507 | . . . . 5 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | dffn5im 5631 | . . . . 5 ⊢ (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤))) | |
| 4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤)) |
| 5 | mptv 4145 | . . . 4 ⊢ (𝑤 ∈ V ↦ (2nd ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | |
| 6 | 4, 5 | eqtri 2227 | . . 3 ⊢ 2nd = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} |
| 7 | 6 | reseq1i 4960 | . 2 ⊢ (2nd ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) |
| 8 | resopab 5008 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} | |
| 9 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | op2ndd 6242 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
| 12 | 11 | eqeq2d 2218 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (2nd ‘𝑤) ↔ 𝑧 = 𝑦)) |
| 13 | 12 | dfoprab3 6284 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} |
| 14 | 7, 8, 13 | 3eqtrri 2232 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3637 {copab 4108 ↦ cmpt 4109 × cxp 4677 ↾ cres 4681 Fn wfn 5271 –onto→wfo 5274 ‘cfv 5276 {coprab 5952 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-oprab 5955 df-1st 6233 df-2nd 6234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |