ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 GIF version

Theorem df2nd2 6188
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df2nd2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6126 . . . . 5 2nd :V–onto→V
2 fofn 5412 . . . . 5 (2nd :V–onto→V → 2nd Fn V)
3 dffn5im 5532 . . . . 5 (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd𝑤)))
41, 2, 3mp2b 8 . . . 4 2nd = (𝑤 ∈ V ↦ (2nd𝑤))
5 mptv 4079 . . . 4 (𝑤 ∈ V ↦ (2nd𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
64, 5eqtri 2186 . . 3 2nd = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
76reseq1i 4880 . 2 (2nd ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V))
8 resopab 4928 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))}
9 vex 2729 . . . . 5 𝑥 ∈ V
10 vex 2729 . . . . 5 𝑦 ∈ V
119, 10op2ndd 6117 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (2nd𝑤) = 𝑦)
1211eqeq2d 2177 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (2nd𝑤) ↔ 𝑧 = 𝑦))
1312dfoprab3 6159 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
147, 8, 133eqtrri 2191 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cop 3579  {copab 4042  cmpt 4043   × cxp 4602  cres 4606   Fn wfn 5183  ontowfo 5186  cfv 5188  {coprab 5843  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-oprab 5846  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator