| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2nd2 | GIF version | ||
| Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2nd2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 6274 | . . . . 5 ⊢ 2nd :V–onto→V | |
| 2 | fofn 5526 | . . . . 5 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | dffn5im 5652 | . . . . 5 ⊢ (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤))) | |
| 4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤)) |
| 5 | mptv 4160 | . . . 4 ⊢ (𝑤 ∈ V ↦ (2nd ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | |
| 6 | 4, 5 | eqtri 2230 | . . 3 ⊢ 2nd = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} |
| 7 | 6 | reseq1i 4977 | . 2 ⊢ (2nd ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) |
| 8 | resopab 5025 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} | |
| 9 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | vex 2782 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | op2ndd 6265 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
| 12 | 11 | eqeq2d 2221 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (2nd ‘𝑤) ↔ 𝑧 = 𝑦)) |
| 13 | 12 | dfoprab3 6307 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} |
| 14 | 7, 8, 13 | 3eqtrri 2235 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 〈cop 3649 {copab 4123 ↦ cmpt 4124 × cxp 4694 ↾ cres 4698 Fn wfn 5289 –onto→wfo 5292 ‘cfv 5294 {coprab 5975 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-oprab 5978 df-1st 6256 df-2nd 6257 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |