![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2nd2 | GIF version |
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df2nd2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 5921 | . . . . 5 ⊢ 2nd :V–onto→V | |
2 | fofn 5229 | . . . . 5 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | dffn5im 5344 | . . . . 5 ⊢ (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤))) | |
4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤)) |
5 | mptv 3933 | . . . 4 ⊢ (𝑤 ∈ V ↦ (2nd ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | |
6 | 4, 5 | eqtri 2108 | . . 3 ⊢ 2nd = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} |
7 | 6 | reseq1i 4705 | . 2 ⊢ (2nd ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) |
8 | resopab 4751 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} | |
9 | vex 2622 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | vex 2622 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | op2ndd 5912 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
12 | 11 | eqeq2d 2099 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (2nd ‘𝑤) ↔ 𝑧 = 𝑦)) |
13 | 12 | dfoprab3 5953 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} |
14 | 7, 8, 13 | 3eqtrri 2113 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1289 ∈ wcel 1438 Vcvv 2619 〈cop 3447 {copab 3896 ↦ cmpt 3897 × cxp 4434 ↾ cres 4438 Fn wfn 5005 –onto→wfo 5008 ‘cfv 5010 {coprab 5645 2nd c2nd 5902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-un 4258 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-fo 5016 df-fv 5018 df-oprab 5648 df-1st 5903 df-2nd 5904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |