| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df2nd2 | GIF version | ||
| Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| df2nd2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fo2nd 6216 | . . . . 5 ⊢ 2nd :V–onto→V | |
| 2 | fofn 5482 | . . . . 5 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | dffn5im 5606 | . . . . 5 ⊢ (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤))) | |
| 4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤)) | 
| 5 | mptv 4130 | . . . 4 ⊢ (𝑤 ∈ V ↦ (2nd ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | |
| 6 | 4, 5 | eqtri 2217 | . . 3 ⊢ 2nd = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | 
| 7 | 6 | reseq1i 4942 | . 2 ⊢ (2nd ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) | 
| 8 | resopab 4990 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} | |
| 9 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | op2ndd 6207 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) | 
| 12 | 11 | eqeq2d 2208 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (2nd ‘𝑤) ↔ 𝑧 = 𝑦)) | 
| 13 | 12 | dfoprab3 6249 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} | 
| 14 | 7, 8, 13 | 3eqtrri 2222 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 {copab 4093 ↦ cmpt 4094 × cxp 4661 ↾ cres 4665 Fn wfn 5253 –onto→wfo 5256 ‘cfv 5258 {coprab 5923 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-oprab 5926 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |