| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resindm | GIF version | ||
| Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
| Ref | Expression |
|---|---|
| resindm | ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm 5043 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 2 | 1 | ineq2d 3405 | . 2 ⊢ (Rel 𝐴 → ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ 𝐴)) |
| 3 | resindi 5019 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) | |
| 4 | incom 3396 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 ↾ 𝐵)) | |
| 5 | inres 5021 | . . 3 ⊢ (𝐴 ∩ (𝐴 ↾ 𝐵)) = ((𝐴 ∩ 𝐴) ↾ 𝐵) | |
| 6 | inidm 3413 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | 6 | reseq1i 5000 | . . 3 ⊢ ((𝐴 ∩ 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| 8 | 4, 5, 7 | 3eqtrri 2255 | . 2 ⊢ (𝐴 ↾ 𝐵) = ((𝐴 ↾ 𝐵) ∩ 𝐴) |
| 9 | 2, 3, 8 | 3eqtr4g 2287 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cin 3196 dom cdm 4718 ↾ cres 4720 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-dm 4728 df-res 4730 |
| This theorem is referenced by: resdmdfsn 5047 |
| Copyright terms: Public domain | W3C validator |