![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resindm | GIF version |
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
Ref | Expression |
---|---|
resindm | ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdm 4981 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
2 | 1 | ineq2d 3360 | . 2 ⊢ (Rel 𝐴 → ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ 𝐴)) |
3 | resindi 4957 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) | |
4 | incom 3351 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 ↾ 𝐵)) | |
5 | inres 4959 | . . 3 ⊢ (𝐴 ∩ (𝐴 ↾ 𝐵)) = ((𝐴 ∩ 𝐴) ↾ 𝐵) | |
6 | inidm 3368 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | 6 | reseq1i 4938 | . . 3 ⊢ ((𝐴 ∩ 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
8 | 4, 5, 7 | 3eqtrri 2219 | . 2 ⊢ (𝐴 ↾ 𝐵) = ((𝐴 ↾ 𝐵) ∩ 𝐴) |
9 | 2, 3, 8 | 3eqtr4g 2251 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∩ cin 3152 dom cdm 4659 ↾ cres 4661 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-dm 4669 df-res 4671 |
This theorem is referenced by: resdmdfsn 4985 |
Copyright terms: Public domain | W3C validator |