ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindm GIF version

Theorem resindm 4769
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))

Proof of Theorem resindm
StepHypRef Expression
1 resdm 4766 . . 3 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
21ineq2d 3204 . 2 (Rel 𝐴 → ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴𝐵) ∩ 𝐴))
3 resindi 4743 . 2 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴))
4 incom 3195 . . 3 ((𝐴𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴𝐵))
5 inres 4745 . . 3 (𝐴 ∩ (𝐴𝐵)) = ((𝐴𝐴) ↾ 𝐵)
6 inidm 3212 . . . 4 (𝐴𝐴) = 𝐴
76reseq1i 4724 . . 3 ((𝐴𝐴) ↾ 𝐵) = (𝐴𝐵)
84, 5, 73eqtrri 2114 . 2 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐴)
92, 3, 83eqtr4g 2146 1 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  cin 3001  dom cdm 4454  cres 4456  Rel wrel 4459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-dm 4464  df-res 4466
This theorem is referenced by:  resdmdfsn  4770
  Copyright terms: Public domain W3C validator