Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resindm | GIF version |
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
Ref | Expression |
---|---|
resindm | ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdm 4939 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
2 | 1 | ineq2d 3334 | . 2 ⊢ (Rel 𝐴 → ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ 𝐴)) |
3 | resindi 4915 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) | |
4 | incom 3325 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 ↾ 𝐵)) | |
5 | inres 4917 | . . 3 ⊢ (𝐴 ∩ (𝐴 ↾ 𝐵)) = ((𝐴 ∩ 𝐴) ↾ 𝐵) | |
6 | inidm 3342 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | 6 | reseq1i 4896 | . . 3 ⊢ ((𝐴 ∩ 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
8 | 4, 5, 7 | 3eqtrri 2201 | . 2 ⊢ (𝐴 ↾ 𝐵) = ((𝐴 ↾ 𝐵) ∩ 𝐴) |
9 | 2, 3, 8 | 3eqtr4g 2233 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∩ cin 3126 dom cdm 4620 ↾ cres 4622 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-dm 4630 df-res 4632 |
This theorem is referenced by: resdmdfsn 4943 |
Copyright terms: Public domain | W3C validator |