| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtri | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 2, 3 | eqtri 2250 | . 2 ⊢ 𝐵 = 𝐷 |
| 5 | 1, 4 | eqtri 2250 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: csbid 3132 un23 3363 in32 3416 dfrab2 3479 difun2 3571 tpidm23 3767 unisn 3904 dfiunv2 4001 uniop 4342 suc0 4502 unisuc 4504 iunsuc 4511 xpun 4780 dfrn2 4910 dfdmf 4916 dfrnf 4965 res0 5009 resres 5017 xpssres 5040 dfima2 5070 imai 5084 ima0 5087 imaundir 5142 xpima1 5175 xpima2m 5176 dmresv 5187 rescnvcnv 5191 dmtpop 5204 rnsnopg 5207 resdmres 5220 dmmpt 5224 dmco 5237 co01 5243 fpr 5825 fmptpr 5835 fvsnun2 5841 mpo0 6080 dmoprab 6091 rnoprab 6093 ov6g 6149 1st0 6296 2nd0 6297 dfmpo 6375 algrflem 6381 dftpos2 6413 tposoprab 6432 tposmpo 6433 tfrlem8 6470 frecsuc 6559 df2o3 6583 sbthlemi5 7136 sup00 7178 casedm 7261 djudm 7280 axi2m1 8070 2p2e4 9245 numsuc 9599 numsucc 9625 decmul10add 9654 5p5e10 9656 6p4e10 9657 7p3e10 9660 xnegmnf 10033 pnfaddmnf 10054 fz0tp 10326 fz0to3un2pr 10327 fzo0to2pr 10432 fzo0to3tp 10433 fzo0to42pr 10434 0tonninf 10670 1tonninf 10671 inftonninf 10672 sq4e2t8 10867 i4 10872 fac1 10959 fac3 10962 abs0 11577 absi 11578 trirecip 12020 geoihalfsum 12041 esum 12181 tan0 12250 ef01bndlem 12275 3dvds 12383 3dvdsdec 12384 3dvds2dec 12385 3lcm2e6woprm 12616 6lcm4e12 12617 gcdmodi 12952 karatsuba 12961 ennnfonelem1 12986 ndxarg 13063 setsfun 13075 setsfun0 13076 txbasval 14949 cnmpt1st 14970 cnmpt2nd 14971 dvmptidcn 15396 cos2pi 15486 tan4thpi 15523 sincos6thpi 15524 sqrt2cxp2logb9e3 15657 2lgslem3c 15782 2lgslem3d 15783 012of 16386 2o01f 16387 pwf1oexmid 16394 isomninnlem 16428 iswomninnlem 16447 ismkvnnlem 16450 |
| Copyright terms: Public domain | W3C validator |