| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtri | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 2, 3 | eqtri 2250 | . 2 ⊢ 𝐵 = 𝐷 |
| 5 | 1, 4 | eqtri 2250 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: csbid 3132 un23 3363 in32 3416 dfrab2 3479 difun2 3571 tpidm23 3767 unisn 3903 dfiunv2 4000 uniop 4341 suc0 4499 unisuc 4501 iunsuc 4508 xpun 4777 dfrn2 4907 dfdmf 4913 dfrnf 4961 res0 5005 resres 5013 xpssres 5036 dfima2 5066 imai 5080 ima0 5083 imaundir 5138 xpima1 5171 xpima2m 5172 dmresv 5183 rescnvcnv 5187 dmtpop 5200 rnsnopg 5203 resdmres 5216 dmmpt 5220 dmco 5233 co01 5239 fpr 5814 fmptpr 5824 fvsnun2 5830 mpo0 6065 dmoprab 6076 rnoprab 6078 ov6g 6134 1st0 6280 2nd0 6281 dfmpo 6359 algrflem 6365 dftpos2 6397 tposoprab 6416 tposmpo 6417 tfrlem8 6454 frecsuc 6543 df2o3 6566 sbthlemi5 7116 sup00 7158 casedm 7241 djudm 7260 axi2m1 8050 2p2e4 9225 numsuc 9579 numsucc 9605 decmul10add 9634 5p5e10 9636 6p4e10 9637 7p3e10 9640 xnegmnf 10013 pnfaddmnf 10034 fz0tp 10306 fz0to3un2pr 10307 fzo0to2pr 10411 fzo0to3tp 10412 fzo0to42pr 10413 0tonninf 10649 1tonninf 10650 inftonninf 10651 sq4e2t8 10846 i4 10851 fac1 10938 fac3 10941 abs0 11555 absi 11556 trirecip 11998 geoihalfsum 12019 esum 12159 tan0 12228 ef01bndlem 12253 3dvds 12361 3dvdsdec 12362 3dvds2dec 12363 3lcm2e6woprm 12594 6lcm4e12 12595 gcdmodi 12930 karatsuba 12939 ennnfonelem1 12964 ndxarg 13041 setsfun 13053 setsfun0 13054 txbasval 14926 cnmpt1st 14947 cnmpt2nd 14948 dvmptidcn 15373 cos2pi 15463 tan4thpi 15500 sincos6thpi 15501 sqrt2cxp2logb9e3 15634 2lgslem3c 15759 2lgslem3d 15760 012of 16288 2o01f 16289 pwf1oexmid 16296 isomninnlem 16329 iswomninnlem 16348 ismkvnnlem 16351 |
| Copyright terms: Public domain | W3C validator |