| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtri.2 | ⊢ 𝐵 = 𝐶 |
| 3eqtri.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtri | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 2, 3 | eqtri 2227 | . 2 ⊢ 𝐵 = 𝐷 |
| 5 | 1, 4 | eqtri 2227 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: csbid 3105 un23 3336 in32 3389 dfrab2 3452 difun2 3544 tpidm23 3738 unisn 3871 dfiunv2 3968 uniop 4307 suc0 4465 unisuc 4467 iunsuc 4474 xpun 4743 dfrn2 4873 dfdmf 4879 dfrnf 4927 res0 4971 resres 4979 xpssres 5002 dfima2 5032 imai 5046 ima0 5049 imaundir 5104 xpima1 5137 xpima2m 5138 dmresv 5149 rescnvcnv 5153 dmtpop 5166 rnsnopg 5169 resdmres 5182 dmmpt 5186 dmco 5199 co01 5205 fpr 5778 fmptpr 5788 fvsnun2 5794 mpo0 6027 dmoprab 6038 rnoprab 6040 ov6g 6096 1st0 6242 2nd0 6243 dfmpo 6321 algrflem 6327 dftpos2 6359 tposoprab 6378 tposmpo 6379 tfrlem8 6416 frecsuc 6505 df2o3 6528 sbthlemi5 7077 sup00 7119 casedm 7202 djudm 7221 axi2m1 8003 2p2e4 9178 numsuc 9532 numsucc 9558 decmul10add 9587 5p5e10 9589 6p4e10 9590 7p3e10 9593 xnegmnf 9966 pnfaddmnf 9987 fz0tp 10259 fz0to3un2pr 10260 fzo0to2pr 10364 fzo0to3tp 10365 fzo0to42pr 10366 0tonninf 10602 1tonninf 10603 inftonninf 10604 sq4e2t8 10799 i4 10804 fac1 10891 fac3 10894 abs0 11439 absi 11440 trirecip 11882 geoihalfsum 11903 esum 12043 tan0 12112 ef01bndlem 12137 3dvds 12245 3dvdsdec 12246 3dvds2dec 12247 3lcm2e6woprm 12478 6lcm4e12 12479 gcdmodi 12814 karatsuba 12823 ennnfonelem1 12848 ndxarg 12925 setsfun 12937 setsfun0 12938 txbasval 14809 cnmpt1st 14830 cnmpt2nd 14831 dvmptidcn 15256 cos2pi 15346 tan4thpi 15383 sincos6thpi 15384 sqrt2cxp2logb9e3 15517 2lgslem3c 15642 2lgslem3d 15643 012of 16065 2o01f 16066 pwf1oexmid 16071 isomninnlem 16104 iswomninnlem 16123 ismkvnnlem 16126 |
| Copyright terms: Public domain | W3C validator |