Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtri | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 2, 3 | eqtri 2196 | . 2 ⊢ 𝐵 = 𝐷 |
5 | 1, 4 | eqtri 2196 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: csbid 3063 un23 3292 in32 3345 dfrab2 3408 difun2 3500 tpidm23 3690 unisn 3821 dfiunv2 3918 uniop 4249 suc0 4405 unisuc 4407 iunsuc 4414 xpun 4681 dfrn2 4808 dfdmf 4813 dfrnf 4861 res0 4904 resres 4912 xpssres 4935 dfima2 4965 imai 4977 ima0 4980 imaundir 5034 xpima1 5067 xpima2m 5068 dmresv 5079 rescnvcnv 5083 dmtpop 5096 rnsnopg 5099 resdmres 5112 dmmpt 5116 dmco 5129 co01 5135 fpr 5690 fmptpr 5700 fvsnun2 5706 mpo0 5935 dmoprab 5946 rnoprab 5948 ov6g 6002 1st0 6135 2nd0 6136 dfmpo 6214 algrflem 6220 dftpos2 6252 tposoprab 6271 tposmpo 6272 tfrlem8 6309 frecsuc 6398 df2o3 6421 sbthlemi5 6950 sup00 6992 casedm 7075 djudm 7094 axi2m1 7849 2p2e4 9019 numsuc 9370 numsucc 9396 decmul10add 9425 5p5e10 9427 6p4e10 9428 7p3e10 9431 xnegmnf 9800 pnfaddmnf 9821 fz0tp 10092 fz0to3un2pr 10093 fzo0to2pr 10188 fzo0to3tp 10189 fzo0to42pr 10190 0tonninf 10409 1tonninf 10410 inftonninf 10411 sq4e2t8 10587 i4 10592 fac1 10677 fac3 10680 abs0 11035 absi 11036 trirecip 11477 geoihalfsum 11498 esum 11638 tan0 11707 ef01bndlem 11732 3dvdsdec 11837 3dvds2dec 11838 3lcm2e6woprm 12053 6lcm4e12 12054 ennnfonelem1 12375 ndxarg 12452 setsfun 12464 setsfun0 12465 txbasval 13347 cnmpt1st 13368 cnmpt2nd 13369 dvmptidcn 13758 cos2pi 13805 tan4thpi 13842 sincos6thpi 13843 sqrt2cxp2logb9e3 13973 012of 14314 2o01f 14315 pwf1oexmid 14318 isomninnlem 14348 iswomninnlem 14367 ismkvnnlem 14370 |
Copyright terms: Public domain | W3C validator |