![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtri | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 2, 3 | eqtri 2120 | . 2 ⊢ 𝐵 = 𝐷 |
5 | 1, 4 | eqtri 2120 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 |
This theorem is referenced by: csbid 2962 un23 3182 in32 3235 dfrab2 3298 difun2 3389 tpidm23 3571 unisn 3699 dfiunv2 3796 uniop 4115 suc0 4271 unisuc 4273 iunsuc 4280 xpun 4538 dfrn2 4665 dfdmf 4670 dfrnf 4718 res0 4759 resres 4767 xpssres 4790 dfima2 4819 imai 4831 ima0 4834 imaundir 4888 xpima1 4921 xpima2m 4922 dmresv 4933 rescnvcnv 4937 dmtpop 4950 rnsnopg 4953 resdmres 4966 dmmpt 4970 dmco 4983 co01 4989 fpr 5534 fmptpr 5544 fvsnun2 5550 mpo0 5773 dmoprab 5784 rnoprab 5786 ov6g 5840 1st0 5973 2nd0 5974 dfmpo 6050 algrflem 6056 dftpos2 6088 tposoprab 6107 tposmpo 6108 tfrlem8 6145 frecsuc 6234 df2o3 6257 sbthlemi5 6777 sup00 6805 casedm 6886 djudm 6905 axi2m1 7560 2p2e4 8699 numsuc 9047 numsucc 9073 decmul10add 9102 5p5e10 9104 6p4e10 9105 7p3e10 9108 xnegmnf 9453 pnfaddmnf 9474 fz0tp 9742 fzo0to2pr 9836 fzo0to3tp 9837 fzo0to42pr 9838 0tonninf 10053 1tonninf 10054 inftonninf 10055 sq4e2t8 10231 i4 10236 fac1 10316 fac3 10319 abs0 10670 absi 10671 trirecip 11109 geoihalfsum 11130 esum 11166 tan0 11236 ef01bndlem 11261 3dvdsdec 11357 3dvds2dec 11358 3lcm2e6woprm 11560 6lcm4e12 11561 ennnfonelem1 11712 ndxarg 11764 setsfun 11776 setsfun0 11777 txbasval 12217 cnmpt1st 12238 cnmpt2nd 12239 pwf1oexmid 12780 isomninnlem 12809 |
Copyright terms: Public domain | W3C validator |