![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtri | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 2, 3 | eqtri 2214 | . 2 ⊢ 𝐵 = 𝐷 |
5 | 1, 4 | eqtri 2214 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: csbid 3088 un23 3318 in32 3371 dfrab2 3434 difun2 3526 tpidm23 3719 unisn 3851 dfiunv2 3948 uniop 4284 suc0 4442 unisuc 4444 iunsuc 4451 xpun 4720 dfrn2 4850 dfdmf 4855 dfrnf 4903 res0 4946 resres 4954 xpssres 4977 dfima2 5007 imai 5021 ima0 5024 imaundir 5079 xpima1 5112 xpima2m 5113 dmresv 5124 rescnvcnv 5128 dmtpop 5141 rnsnopg 5144 resdmres 5157 dmmpt 5161 dmco 5174 co01 5180 fpr 5740 fmptpr 5750 fvsnun2 5756 mpo0 5988 dmoprab 5999 rnoprab 6001 ov6g 6056 1st0 6197 2nd0 6198 dfmpo 6276 algrflem 6282 dftpos2 6314 tposoprab 6333 tposmpo 6334 tfrlem8 6371 frecsuc 6460 df2o3 6483 sbthlemi5 7020 sup00 7062 casedm 7145 djudm 7164 axi2m1 7935 2p2e4 9109 numsuc 9461 numsucc 9487 decmul10add 9516 5p5e10 9518 6p4e10 9519 7p3e10 9522 xnegmnf 9895 pnfaddmnf 9916 fz0tp 10188 fz0to3un2pr 10189 fzo0to2pr 10285 fzo0to3tp 10286 fzo0to42pr 10287 0tonninf 10511 1tonninf 10512 inftonninf 10513 sq4e2t8 10708 i4 10713 fac1 10800 fac3 10803 abs0 11202 absi 11203 trirecip 11644 geoihalfsum 11665 esum 11805 tan0 11874 ef01bndlem 11899 3dvdsdec 12006 3dvds2dec 12007 3lcm2e6woprm 12224 6lcm4e12 12225 ennnfonelem1 12564 ndxarg 12641 setsfun 12653 setsfun0 12654 txbasval 14435 cnmpt1st 14456 cnmpt2nd 14457 dvmptidcn 14863 cos2pi 14939 tan4thpi 14976 sincos6thpi 14977 sqrt2cxp2logb9e3 15107 012of 15486 2o01f 15487 pwf1oexmid 15490 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |