Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtri | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 2, 3 | eqtri 2191 | . 2 ⊢ 𝐵 = 𝐷 |
5 | 1, 4 | eqtri 2191 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbid 3057 un23 3286 in32 3339 dfrab2 3402 difun2 3494 tpidm23 3684 unisn 3812 dfiunv2 3909 uniop 4240 suc0 4396 unisuc 4398 iunsuc 4405 xpun 4672 dfrn2 4799 dfdmf 4804 dfrnf 4852 res0 4895 resres 4903 xpssres 4926 dfima2 4955 imai 4967 ima0 4970 imaundir 5024 xpima1 5057 xpima2m 5058 dmresv 5069 rescnvcnv 5073 dmtpop 5086 rnsnopg 5089 resdmres 5102 dmmpt 5106 dmco 5119 co01 5125 fpr 5678 fmptpr 5688 fvsnun2 5694 mpo0 5923 dmoprab 5934 rnoprab 5936 ov6g 5990 1st0 6123 2nd0 6124 dfmpo 6202 algrflem 6208 dftpos2 6240 tposoprab 6259 tposmpo 6260 tfrlem8 6297 frecsuc 6386 df2o3 6409 sbthlemi5 6938 sup00 6980 casedm 7063 djudm 7082 axi2m1 7837 2p2e4 9005 numsuc 9356 numsucc 9382 decmul10add 9411 5p5e10 9413 6p4e10 9414 7p3e10 9417 xnegmnf 9786 pnfaddmnf 9807 fz0tp 10078 fz0to3un2pr 10079 fzo0to2pr 10174 fzo0to3tp 10175 fzo0to42pr 10176 0tonninf 10395 1tonninf 10396 inftonninf 10397 sq4e2t8 10573 i4 10578 fac1 10663 fac3 10666 abs0 11022 absi 11023 trirecip 11464 geoihalfsum 11485 esum 11625 tan0 11694 ef01bndlem 11719 3dvdsdec 11824 3dvds2dec 11825 3lcm2e6woprm 12040 6lcm4e12 12041 ennnfonelem1 12362 ndxarg 12439 setsfun 12451 setsfun0 12452 txbasval 13061 cnmpt1st 13082 cnmpt2nd 13083 dvmptidcn 13472 cos2pi 13519 tan4thpi 13556 sincos6thpi 13557 sqrt2cxp2logb9e3 13687 012of 14028 2o01f 14029 pwf1oexmid 14032 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |