Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ 𝐴 = 𝐵 |
3eqtri.2 | ⊢ 𝐵 = 𝐶 |
3eqtri.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtri | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 3eqtri.3 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 2, 3 | eqtri 2186 | . 2 ⊢ 𝐵 = 𝐷 |
5 | 1, 4 | eqtri 2186 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: csbid 3053 un23 3281 in32 3334 dfrab2 3397 difun2 3488 tpidm23 3677 unisn 3805 dfiunv2 3902 uniop 4233 suc0 4389 unisuc 4391 iunsuc 4398 xpun 4665 dfrn2 4792 dfdmf 4797 dfrnf 4845 res0 4888 resres 4896 xpssres 4919 dfima2 4948 imai 4960 ima0 4963 imaundir 5017 xpima1 5050 xpima2m 5051 dmresv 5062 rescnvcnv 5066 dmtpop 5079 rnsnopg 5082 resdmres 5095 dmmpt 5099 dmco 5112 co01 5118 fpr 5667 fmptpr 5677 fvsnun2 5683 mpo0 5912 dmoprab 5923 rnoprab 5925 ov6g 5979 1st0 6112 2nd0 6113 dfmpo 6191 algrflem 6197 dftpos2 6229 tposoprab 6248 tposmpo 6249 tfrlem8 6286 frecsuc 6375 df2o3 6398 sbthlemi5 6926 sup00 6968 casedm 7051 djudm 7070 axi2m1 7816 2p2e4 8984 numsuc 9335 numsucc 9361 decmul10add 9390 5p5e10 9392 6p4e10 9393 7p3e10 9396 xnegmnf 9765 pnfaddmnf 9786 fz0tp 10057 fz0to3un2pr 10058 fzo0to2pr 10153 fzo0to3tp 10154 fzo0to42pr 10155 0tonninf 10374 1tonninf 10375 inftonninf 10376 sq4e2t8 10552 i4 10557 fac1 10642 fac3 10645 abs0 11000 absi 11001 trirecip 11442 geoihalfsum 11463 esum 11603 tan0 11672 ef01bndlem 11697 3dvdsdec 11802 3dvds2dec 11803 3lcm2e6woprm 12018 6lcm4e12 12019 ennnfonelem1 12340 ndxarg 12417 setsfun 12429 setsfun0 12430 txbasval 12907 cnmpt1st 12928 cnmpt2nd 12929 dvmptidcn 13318 cos2pi 13365 tan4thpi 13402 sincos6thpi 13403 sqrt2cxp2logb9e3 13533 012of 13875 2o01f 13876 pwf1oexmid 13879 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |