![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1st2 | GIF version |
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df1st2 | ⢠{āØāØš„, š¦ā©, š§ā© ⣠š§ = š„} = (1st ā¾ (V Ć V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6160 | . . . . 5 ⢠1st :VāontoāV | |
2 | fofn 5442 | . . . . 5 ⢠(1st :VāontoāV ā 1st Fn V) | |
3 | dffn5im 5563 | . . . . 5 ⢠(1st Fn V ā 1st = (š¤ ā V ⦠(1st āš¤))) | |
4 | 1, 2, 3 | mp2b 8 | . . . 4 ⢠1st = (š¤ ā V ⦠(1st āš¤)) |
5 | mptv 4102 | . . . 4 ⢠(š¤ ā V ⦠(1st āš¤)) = {āØš¤, š§ā© ⣠š§ = (1st āš¤)} | |
6 | 4, 5 | eqtri 2198 | . . 3 ⢠1st = {āØš¤, š§ā© ⣠š§ = (1st āš¤)} |
7 | 6 | reseq1i 4905 | . 2 ⢠(1st ā¾ (V Ć V)) = ({āØš¤, š§ā© ⣠š§ = (1st āš¤)} ā¾ (V Ć V)) |
8 | resopab 4953 | . 2 ⢠({āØš¤, š§ā© ⣠š§ = (1st āš¤)} ā¾ (V Ć V)) = {āØš¤, š§ā© ⣠(š¤ ā (V Ć V) ā§ š§ = (1st āš¤))} | |
9 | vex 2742 | . . . . 5 ⢠š„ ā V | |
10 | vex 2742 | . . . . 5 ⢠š¦ ā V | |
11 | 9, 10 | op1std 6151 | . . . 4 ⢠(š¤ = āØš„, š¦ā© ā (1st āš¤) = š„) |
12 | 11 | eqeq2d 2189 | . . 3 ⢠(š¤ = āØš„, š¦ā© ā (š§ = (1st āš¤) ā š§ = š„)) |
13 | 12 | dfoprab3 6194 | . 2 ⢠{āØš¤, š§ā© ⣠(š¤ ā (V Ć V) ā§ š§ = (1st āš¤))} = {āØāØš„, š¦ā©, š§ā© ⣠š§ = š„} |
14 | 7, 8, 13 | 3eqtrri 2203 | 1 ⢠{āØāØš„, š¦ā©, š§ā© ⣠š§ = š„} = (1st ā¾ (V Ć V)) |
Colors of variables: wff set class |
Syntax hints: ā§ wa 104 = wceq 1353 ā wcel 2148 Vcvv 2739 āØcop 3597 {copab 4065 ⦠cmpt 4066 Ć cxp 4626 ā¾ cres 4630 Fn wfn 5213 āontoāwfo 5216 ācfv 5218 {coprab 5878 1st c1st 6141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-oprab 5881 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |