ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 GIF version

Theorem df1st2 6355
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df1st2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo1st 6293 . . . . 5 1st :V–onto→V
2 fofn 5546 . . . . 5 (1st :V–onto→V → 1st Fn V)
3 dffn5im 5672 . . . . 5 (1st Fn V → 1st = (𝑤 ∈ V ↦ (1st𝑤)))
41, 2, 3mp2b 8 . . . 4 1st = (𝑤 ∈ V ↦ (1st𝑤))
5 mptv 4180 . . . 4 (𝑤 ∈ V ↦ (1st𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
64, 5eqtri 2250 . . 3 1st = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
76reseq1i 4997 . 2 (1st ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V))
8 resopab 5045 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))}
9 vex 2802 . . . . 5 𝑥 ∈ V
10 vex 2802 . . . . 5 𝑦 ∈ V
119, 10op1std 6284 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) = 𝑥)
1211eqeq2d 2241 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (1st𝑤) ↔ 𝑧 = 𝑥))
1312dfoprab3 6327 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
147, 8, 133eqtrri 2255 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cop 3669  {copab 4143  cmpt 4144   × cxp 4714  cres 4718   Fn wfn 5309  ontowfo 5312  cfv 5314  {coprab 5995  1st c1st 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-oprab 5998  df-1st 6276  df-2nd 6277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator