ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 GIF version

Theorem df1st2 6109
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df1st2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo1st 6048 . . . . 5 1st :V–onto→V
2 fofn 5342 . . . . 5 (1st :V–onto→V → 1st Fn V)
3 dffn5im 5460 . . . . 5 (1st Fn V → 1st = (𝑤 ∈ V ↦ (1st𝑤)))
41, 2, 3mp2b 8 . . . 4 1st = (𝑤 ∈ V ↦ (1st𝑤))
5 mptv 4020 . . . 4 (𝑤 ∈ V ↦ (1st𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
64, 5eqtri 2158 . . 3 1st = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
76reseq1i 4810 . 2 (1st ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V))
8 resopab 4858 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))}
9 vex 2684 . . . . 5 𝑥 ∈ V
10 vex 2684 . . . . 5 𝑦 ∈ V
119, 10op1std 6039 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) = 𝑥)
1211eqeq2d 2149 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (1st𝑤) ↔ 𝑧 = 𝑥))
1312dfoprab3 6082 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
147, 8, 133eqtrri 2163 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wcel 1480  Vcvv 2681  cop 3525  {copab 3983  cmpt 3984   × cxp 4532  cres 4536   Fn wfn 5113  ontowfo 5116  cfv 5118  {coprab 5768  1st c1st 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124  df-fv 5126  df-oprab 5771  df-1st 6031  df-2nd 6032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator