![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1st2 | GIF version |
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df1st2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6210 | . . . . 5 ⊢ 1st :V–onto→V | |
2 | fofn 5478 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | dffn5im 5602 | . . . . 5 ⊢ (1st Fn V → 1st = (𝑤 ∈ V ↦ (1st ‘𝑤))) | |
4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 1st = (𝑤 ∈ V ↦ (1st ‘𝑤)) |
5 | mptv 4126 | . . . 4 ⊢ (𝑤 ∈ V ↦ (1st ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} | |
6 | 4, 5 | eqtri 2214 | . . 3 ⊢ 1st = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} |
7 | 6 | reseq1i 4938 | . 2 ⊢ (1st ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) |
8 | resopab 4986 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} | |
9 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | op1std 6201 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) |
12 | 11 | eqeq2d 2205 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (1st ‘𝑤) ↔ 𝑧 = 𝑥)) |
13 | 12 | dfoprab3 6244 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} |
14 | 7, 8, 13 | 3eqtrri 2219 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 {copab 4089 ↦ cmpt 4090 × cxp 4657 ↾ cres 4661 Fn wfn 5249 –onto→wfo 5252 ‘cfv 5254 {coprab 5919 1st c1st 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fo 5260 df-fv 5262 df-oprab 5922 df-1st 6193 df-2nd 6194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |