| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1st2 | GIF version | ||
| Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| df1st2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 6293 | . . . . 5 ⊢ 1st :V–onto→V | |
| 2 | fofn 5546 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | dffn5im 5672 | . . . . 5 ⊢ (1st Fn V → 1st = (𝑤 ∈ V ↦ (1st ‘𝑤))) | |
| 4 | 1, 2, 3 | mp2b 8 | . . . 4 ⊢ 1st = (𝑤 ∈ V ↦ (1st ‘𝑤)) |
| 5 | mptv 4180 | . . . 4 ⊢ (𝑤 ∈ V ↦ (1st ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} | |
| 6 | 4, 5 | eqtri 2250 | . . 3 ⊢ 1st = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} |
| 7 | 6 | reseq1i 4997 | . 2 ⊢ (1st ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) |
| 8 | resopab 5045 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} | |
| 9 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | op1std 6284 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) |
| 12 | 11 | eqeq2d 2241 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (1st ‘𝑤) ↔ 𝑧 = 𝑥)) |
| 13 | 12 | dfoprab3 6327 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} |
| 14 | 7, 8, 13 | 3eqtrri 2255 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 {copab 4143 ↦ cmpt 4144 × cxp 4714 ↾ cres 4718 Fn wfn 5309 –onto→wfo 5312 ‘cfv 5314 {coprab 5995 1st c1st 6274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-oprab 5998 df-1st 6276 df-2nd 6277 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |