ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 GIF version

Theorem df1st2 6222
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘„} = (1st ↾ (V Ɨ V))
Distinct variable group:   š‘„,š‘¦,š‘§

Proof of Theorem df1st2
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 fo1st 6160 . . . . 5 1st :V–onto→V
2 fofn 5442 . . . . 5 (1st :V–onto→V → 1st Fn V)
3 dffn5im 5563 . . . . 5 (1st Fn V → 1st = (š‘¤ ∈ V ↦ (1st ā€˜š‘¤)))
41, 2, 3mp2b 8 . . . 4 1st = (š‘¤ ∈ V ↦ (1st ā€˜š‘¤))
5 mptv 4102 . . . 4 (š‘¤ ∈ V ↦ (1st ā€˜š‘¤)) = {āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (1st ā€˜š‘¤)}
64, 5eqtri 2198 . . 3 1st = {āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (1st ā€˜š‘¤)}
76reseq1i 4905 . 2 (1st ↾ (V Ɨ V)) = ({āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (1st ā€˜š‘¤)} ↾ (V Ɨ V))
8 resopab 4953 . 2 ({āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (1st ā€˜š‘¤)} ↾ (V Ɨ V)) = {āŸØš‘¤, š‘§āŸ© ∣ (š‘¤ ∈ (V Ɨ V) ∧ š‘§ = (1st ā€˜š‘¤))}
9 vex 2742 . . . . 5 š‘„ ∈ V
10 vex 2742 . . . . 5 š‘¦ ∈ V
119, 10op1std 6151 . . . 4 (š‘¤ = āŸØš‘„, š‘¦āŸ© → (1st ā€˜š‘¤) = š‘„)
1211eqeq2d 2189 . . 3 (š‘¤ = āŸØš‘„, š‘¦āŸ© → (š‘§ = (1st ā€˜š‘¤) ↔ š‘§ = š‘„))
1312dfoprab3 6194 . 2 {āŸØš‘¤, š‘§āŸ© ∣ (š‘¤ ∈ (V Ɨ V) ∧ š‘§ = (1st ā€˜š‘¤))} = {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘„}
147, 8, 133eqtrri 2203 1 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘„} = (1st ↾ (V Ɨ V))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739  āŸØcop 3597  {copab 4065   ↦ cmpt 4066   Ɨ cxp 4626   ↾ cres 4630   Fn wfn 5213  ā€“onto→wfo 5216  ā€˜cfv 5218  {coprab 5878  1st c1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-oprab 5881  df-1st 6143  df-2nd 6144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator