| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 |
|
| 3eqtri.2 |
|
| 3eqtri.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 |
. . 3
| |
| 2 | 3eqtri.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2226 |
. 2
|
| 4 | 3eqtri.3 |
. 2
| |
| 5 | 3, 4 | eqtr2i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: resindm 5001 dfdm2 5217 cofunex2g 6195 df1st2 6305 df2nd2 6306 enq0enq 7544 dfn2 9308 9p1e10 9506 0.999... 11832 pockthi 12681 sincosq3sgn 15300 sincosq4sgn 15301 |
| Copyright terms: Public domain | W3C validator |