![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 |
![]() ![]() ![]() ![]() |
3eqtri.2 |
![]() ![]() ![]() ![]() |
3eqtri.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtri.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2198 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtri.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2i 2199 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: resindm 4951 dfdm2 5165 cofunex2g 6113 df1st2 6222 df2nd2 6223 enq0enq 7432 dfn2 9191 9p1e10 9388 0.999... 11531 pockthi 12358 sincosq3sgn 14334 sincosq4sgn 14335 |
Copyright terms: Public domain | W3C validator |