| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 |
|
| 3eqtri.2 |
|
| 3eqtri.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 |
. . 3
| |
| 2 | 3eqtri.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2228 |
. 2
|
| 4 | 3eqtri.3 |
. 2
| |
| 5 | 3, 4 | eqtr2i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: resindm 5020 dfdm2 5236 cofunex2g 6218 df1st2 6328 df2nd2 6329 enq0enq 7579 dfn2 9343 9p1e10 9541 0.999... 11947 pockthi 12796 sincosq3sgn 15415 sincosq4sgn 15416 |
| Copyright terms: Public domain | W3C validator |