| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtri.1 |
|
| 3eqtri.2 |
|
| 3eqtri.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtri.1 |
. . 3
| |
| 2 | 3eqtri.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2217 |
. 2
|
| 4 | 3eqtri.3 |
. 2
| |
| 5 | 3, 4 | eqtr2i 2218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: resindm 4989 dfdm2 5205 cofunex2g 6176 df1st2 6286 df2nd2 6287 enq0enq 7515 dfn2 9279 9p1e10 9476 0.999... 11703 pockthi 12552 sincosq3sgn 15148 sincosq4sgn 15149 |
| Copyright terms: Public domain | W3C validator |