![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtri.1 |
![]() ![]() ![]() ![]() |
3eqtri.2 |
![]() ![]() ![]() ![]() |
3eqtri.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtri.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2214 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtri.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2i 2215 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: resindm 4985 dfdm2 5201 cofunex2g 6164 df1st2 6274 df2nd2 6275 enq0enq 7493 dfn2 9256 9p1e10 9453 0.999... 11667 pockthi 12499 sincosq3sgn 15004 sincosq4sgn 15005 |
Copyright terms: Public domain | W3C validator |