Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cofunex2g | GIF version |
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 5141 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cofunexg 6077 | . . . 4 ⊢ ((Fun ◡𝐵 ∧ ◡𝐴 ∈ V) → (◡𝐵 ∘ ◡𝐴) ∈ V) | |
3 | 1, 2 | sylan2 284 | . . 3 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝐵 ∘ ◡𝐴) ∈ V) |
4 | cnvco 4789 | . . . . 5 ⊢ ◡(◡𝐵 ∘ ◡𝐴) = (◡◡𝐴 ∘ ◡◡𝐵) | |
5 | cocnvcnv2 5115 | . . . . 5 ⊢ (◡◡𝐴 ∘ ◡◡𝐵) = (◡◡𝐴 ∘ 𝐵) | |
6 | cocnvcnv1 5114 | . . . . 5 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | |
7 | 4, 5, 6 | 3eqtrri 2191 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = ◡(◡𝐵 ∘ ◡𝐴) |
8 | cnvexg 5141 | . . . 4 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → ◡(◡𝐵 ∘ ◡𝐴) ∈ V) | |
9 | 7, 8 | eqeltrid 2253 | . . 3 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → (𝐴 ∘ 𝐵) ∈ V) |
10 | 3, 9 | syl 14 | . 2 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∘ 𝐵) ∈ V) |
11 | 10 | ancoms 266 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ◡ccnv 4603 ∘ ccom 4608 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |