ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunex2g GIF version

Theorem cofunex2g 5883
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunex2g ((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunex2g
StepHypRef Expression
1 cnvexg 4968 . . . 4 (𝐴𝑉𝐴 ∈ V)
2 cofunexg 5882 . . . 4 ((Fun 𝐵𝐴 ∈ V) → (𝐵𝐴) ∈ V)
31, 2sylan2 280 . . 3 ((Fun 𝐵𝐴𝑉) → (𝐵𝐴) ∈ V)
4 cnvco 4621 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
5 cocnvcnv2 4942 . . . . 5 (𝐴𝐵) = (𝐴𝐵)
6 cocnvcnv1 4941 . . . . 5 (𝐴𝐵) = (𝐴𝐵)
74, 5, 63eqtrri 2113 . . . 4 (𝐴𝐵) = (𝐵𝐴)
8 cnvexg 4968 . . . 4 ((𝐵𝐴) ∈ V → (𝐵𝐴) ∈ V)
97, 8syl5eqel 2174 . . 3 ((𝐵𝐴) ∈ V → (𝐴𝐵) ∈ V)
103, 9syl 14 . 2 ((Fun 𝐵𝐴𝑉) → (𝐴𝐵) ∈ V)
1110ancoms 264 1 ((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1438  Vcvv 2619  ccnv 4437  ccom 4442  Fun wfun 5009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator