ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunex2g GIF version

Theorem cofunex2g 6089
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunex2g ((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunex2g
StepHypRef Expression
1 cnvexg 5148 . . . 4 (𝐴𝑉𝐴 ∈ V)
2 cofunexg 6088 . . . 4 ((Fun 𝐵𝐴 ∈ V) → (𝐵𝐴) ∈ V)
31, 2sylan2 284 . . 3 ((Fun 𝐵𝐴𝑉) → (𝐵𝐴) ∈ V)
4 cnvco 4796 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
5 cocnvcnv2 5122 . . . . 5 (𝐴𝐵) = (𝐴𝐵)
6 cocnvcnv1 5121 . . . . 5 (𝐴𝐵) = (𝐴𝐵)
74, 5, 63eqtrri 2196 . . . 4 (𝐴𝐵) = (𝐵𝐴)
8 cnvexg 5148 . . . 4 ((𝐵𝐴) ∈ V → (𝐵𝐴) ∈ V)
97, 8eqeltrid 2257 . . 3 ((𝐵𝐴) ∈ V → (𝐴𝐵) ∈ V)
103, 9syl 14 . 2 ((Fun 𝐵𝐴𝑉) → (𝐴𝐵) ∈ V)
1110ancoms 266 1 ((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  Vcvv 2730  ccnv 4610  ccom 4615  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator