| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2i | ⊢ 𝐶 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2217 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3 | eqcomi 2200 | 1 ⊢ 𝐶 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtrri 2222 3eqtr2ri 2224 symdif1 3429 dfif3 3575 dfsn2 3637 prprc1 3731 ruv 4587 xpindi 4802 xpindir 4803 dmcnvcnv 4891 rncnvcnv 4892 imainrect 5116 dfrn4 5131 fcoi1 5441 foimacnv 5525 fsnunfv 5766 dfoprab3 6258 fiintim 7001 sbthlemi8 7039 pitonnlem1 7931 ixi 8629 recexaplem2 8698 zeo 9450 num0h 9487 dec10p 9518 fseq1p1m1 10188 fsumrelem 11655 ef0lem 11844 ef01bndlem 11940 3lcm2e6woprm 12281 strsl0 12754 0g0 13080 tgioo 14898 tgqioo 14899 dveflem 15070 sincos4thpi 15184 coskpi 15192 |
| Copyright terms: Public domain | W3C validator |