| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2i | ⊢ 𝐶 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2225 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3 | eqcomi 2208 | 1 ⊢ 𝐶 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtrri 2230 3eqtr2ri 2232 symdif1 3437 dfif3 3583 dfsn2 3646 prprc1 3740 ruv 4597 xpindi 4812 xpindir 4813 dmcnvcnv 4901 rncnvcnv 4902 imainrect 5127 dfrn4 5142 fcoi1 5455 foimacnv 5539 fsnunfv 5784 dfoprab3 6276 fiintim 7027 sbthlemi8 7065 pitonnlem1 7957 ixi 8655 recexaplem2 8724 zeo 9477 num0h 9514 dec10p 9545 fseq1p1m1 10215 fsumrelem 11724 ef0lem 11913 ef01bndlem 12009 3lcm2e6woprm 12350 strsl0 12823 0g0 13150 tgioo 14968 tgqioo 14969 dveflem 15140 sincos4thpi 15254 coskpi 15262 |
| Copyright terms: Public domain | W3C validator |