![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2214 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2197 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtrri 2219 3eqtr2ri 2221 symdif1 3425 dfif3 3571 dfsn2 3633 prprc1 3727 ruv 4583 xpindi 4798 xpindir 4799 dmcnvcnv 4887 rncnvcnv 4888 imainrect 5112 dfrn4 5127 fcoi1 5435 foimacnv 5519 fsnunfv 5760 dfoprab3 6246 fiintim 6987 sbthlemi8 7025 pitonnlem1 7907 ixi 8604 recexaplem2 8673 zeo 9425 num0h 9462 dec10p 9493 fseq1p1m1 10163 fsumrelem 11617 ef0lem 11806 ef01bndlem 11902 3lcm2e6woprm 12227 strsl0 12670 0g0 12962 tgioo 14733 tgqioo 14734 dveflem 14905 sincos4thpi 15016 coskpi 15024 |
Copyright terms: Public domain | W3C validator |