![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2214 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2197 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtrri 2219 3eqtr2ri 2221 symdif1 3424 dfif3 3570 dfsn2 3632 prprc1 3726 ruv 4582 xpindi 4797 xpindir 4798 dmcnvcnv 4886 rncnvcnv 4887 imainrect 5111 dfrn4 5126 fcoi1 5434 foimacnv 5518 fsnunfv 5759 dfoprab3 6244 fiintim 6985 sbthlemi8 7023 pitonnlem1 7905 ixi 8602 recexaplem2 8671 zeo 9422 num0h 9459 dec10p 9490 fseq1p1m1 10160 fsumrelem 11614 ef0lem 11803 ef01bndlem 11899 3lcm2e6woprm 12224 strsl0 12667 0g0 12959 tgioo 14714 tgqioo 14715 dveflem 14872 sincos4thpi 14975 coskpi 14983 |
Copyright terms: Public domain | W3C validator |