| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2i | ⊢ 𝐶 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2227 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3 | eqcomi 2210 | 1 ⊢ 𝐶 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: 3eqtrri 2232 3eqtr2ri 2234 symdif1 3442 dfif3 3589 dfsn2 3652 prprc1 3746 ruv 4606 xpindi 4821 xpindir 4822 dmcnvcnv 4911 rncnvcnv 4912 imainrect 5137 dfrn4 5152 fcoi1 5468 foimacnv 5552 fsnunfv 5798 dfoprab3 6290 fiintim 7043 sbthlemi8 7081 pitonnlem1 7978 ixi 8676 recexaplem2 8745 zeo 9498 num0h 9535 dec10p 9566 fseq1p1m1 10236 fsumrelem 11857 ef0lem 12046 ef01bndlem 12142 3lcm2e6woprm 12483 strsl0 12956 0g0 13283 tgioo 15101 tgqioo 15102 dveflem 15273 sincos4thpi 15387 coskpi 15395 |
| Copyright terms: Public domain | W3C validator |