Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2191 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2174 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtrri 2196 3eqtr2ri 2198 symdif1 3392 dfif3 3539 dfsn2 3597 prprc1 3691 ruv 4534 xpindi 4746 xpindir 4747 dmcnvcnv 4835 rncnvcnv 4836 imainrect 5056 dfrn4 5071 fcoi1 5378 foimacnv 5460 fsnunfv 5697 dfoprab3 6170 fiintim 6906 sbthlemi8 6941 pitonnlem1 7807 ixi 8502 recexaplem2 8570 zeo 9317 num0h 9354 dec10p 9385 fseq1p1m1 10050 fsumrelem 11434 ef0lem 11623 ef01bndlem 11719 3lcm2e6woprm 12040 strsl0 12464 0g0 12630 tgioo 13340 tgqioo 13341 dveflem 13481 sincos4thpi 13555 coskpi 13563 |
Copyright terms: Public domain | W3C validator |