| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2i | ⊢ 𝐶 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2250 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3 | eqcomi 2233 | 1 ⊢ 𝐶 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtrri 2255 3eqtr2ri 2257 symdif1 3469 dfif3 3616 dfsn2 3680 prprc1 3774 ruv 4641 xpindi 4856 xpindir 4857 dmcnvcnv 4947 rncnvcnv 4948 imainrect 5173 dfrn4 5188 fcoi1 5505 foimacnv 5589 fsnunfv 5839 dfoprab3 6335 fiintim 7089 sbthlemi8 7127 pitonnlem1 8028 ixi 8726 recexaplem2 8795 zeo 9548 num0h 9585 dec10p 9616 fseq1p1m1 10286 cats1fvn 11291 fsumrelem 11977 ef0lem 12166 ef01bndlem 12262 3lcm2e6woprm 12603 strsl0 13076 0g0 13404 tgioo 15222 tgqioo 15223 dveflem 15394 sincos4thpi 15508 coskpi 15516 |
| Copyright terms: Public domain | W3C validator |