Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2186 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2169 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtrri 2191 3eqtr2ri 2193 symdif1 3387 dfif3 3533 dfsn2 3590 prprc1 3684 ruv 4527 xpindi 4739 xpindir 4740 dmcnvcnv 4828 rncnvcnv 4829 imainrect 5049 dfrn4 5064 fcoi1 5368 foimacnv 5450 fsnunfv 5686 dfoprab3 6159 fiintim 6894 sbthlemi8 6929 pitonnlem1 7786 ixi 8481 recexaplem2 8549 zeo 9296 num0h 9333 dec10p 9364 fseq1p1m1 10029 fsumrelem 11412 ef0lem 11601 ef01bndlem 11697 3lcm2e6woprm 12018 strsl0 12442 0g0 12607 tgioo 13196 tgqioo 13197 dveflem 13337 sincos4thpi 13411 coskpi 13419 |
Copyright terms: Public domain | W3C validator |