![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2120 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2104 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 |
This theorem is referenced by: 3eqtrri 2125 3eqtr2ri 2127 symdif1 3288 dfif3 3434 dfsn2 3488 prprc1 3578 ruv 4403 xpindi 4612 xpindir 4613 dmcnvcnv 4701 rncnvcnv 4702 imainrect 4920 dfrn4 4935 fcoi1 5239 foimacnv 5319 fsnunfv 5553 dfoprab3 6019 fiintim 6746 sbthlemi8 6780 pitonnlem1 7532 ixi 8211 recexaplem2 8274 zeo 9008 num0h 9045 dec10p 9076 fseq1p1m1 9715 fsumrelem 11079 ef0lem 11164 ef01bndlem 11261 3lcm2e6woprm 11560 strsl0 11789 tgioo 12465 tgqioo 12466 |
Copyright terms: Public domain | W3C validator |