| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2i | ⊢ 𝐶 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtri 2217 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3 | eqcomi 2200 | 1 ⊢ 𝐶 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtrri 2222 3eqtr2ri 2224 symdif1 3428 dfif3 3574 dfsn2 3636 prprc1 3730 ruv 4586 xpindi 4801 xpindir 4802 dmcnvcnv 4890 rncnvcnv 4891 imainrect 5115 dfrn4 5130 fcoi1 5438 foimacnv 5522 fsnunfv 5763 dfoprab3 6249 fiintim 6992 sbthlemi8 7030 pitonnlem1 7912 ixi 8610 recexaplem2 8679 zeo 9431 num0h 9468 dec10p 9499 fseq1p1m1 10169 fsumrelem 11636 ef0lem 11825 ef01bndlem 11921 3lcm2e6woprm 12254 strsl0 12727 0g0 13019 tgioo 14790 tgqioo 14791 dveflem 14962 sincos4thpi 15076 coskpi 15084 |
| Copyright terms: Public domain | W3C validator |