ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... GIF version

Theorem 0.999... 12018
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 9186 . . . . . 6 9 ∈ ℂ
21a1i 9 . . . . 5 (𝑘 ∈ ℕ → 9 ∈ ℂ)
3 10re 9584 . . . . . . . 8 10 ∈ ℝ
43recni 8146 . . . . . . 7 10 ∈ ℂ
54a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
6 nnnn0 9364 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
75, 6expcld 10882 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
8 10pos 9582 . . . . . . . 8 0 < 10
93, 8gt0ap0ii 8763 . . . . . . 7 10 # 0
109a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 # 0)
11 nnz 9453 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
125, 10, 11expap0d 10888 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) # 0)
132, 7, 12divrecapd 8928 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
145, 10, 11exprecapd 10890 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1514oveq2d 6010 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1613, 15eqtr4d 2265 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1716sumeq2i 11861 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
183, 9rerecclapi 8912 . . . . 5 (1 / 10) ∈ ℝ
1918recni 8146 . . . 4 (1 / 10) ∈ ℂ
20 0re 8134 . . . . . . 7 0 ∈ ℝ
213, 8recgt0ii 9042 . . . . . . 7 0 < (1 / 10)
2220, 18, 21ltleii 8237 . . . . . 6 0 ≤ (1 / 10)
2318absidi 11623 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2422, 23ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
25 1lt10 9704 . . . . . 6 1 < 10
26 recgt1 9032 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
273, 8, 26mp2an 426 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2825, 27mpbi 145 . . . . 5 (1 / 10) < 1
2924, 28eqbrtri 4103 . . . 4 (abs‘(1 / 10)) < 1
30 geoisum1c 12017 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
311, 19, 29, 30mp3an 1371 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
321, 4, 9divrecapi 8892 . . . 4 (9 / 10) = (9 · (1 / 10))
331, 4, 9divcanap2i 8890 . . . . . 6 (10 · (9 / 10)) = 9
34 ax-1cn 8080 . . . . . . . 8 1 ∈ ℂ
354, 34, 19subdii 8541 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
364mulridi 8136 . . . . . . . 8 (10 · 1) = 10
374, 9recidapi 8878 . . . . . . . 8 (10 · (1 / 10)) = 1
3836, 37oveq12i 6006 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
39 10m1e9 9661 . . . . . . 7 (10 − 1) = 9
4035, 38, 393eqtrri 2255 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4133, 40eqtri 2250 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
42 9re 9185 . . . . . . . 8 9 ∈ ℝ
4342, 3, 9redivclapi 8914 . . . . . . 7 (9 / 10) ∈ ℝ
4443recni 8146 . . . . . 6 (9 / 10) ∈ ℂ
4534, 19subcli 8410 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4644, 45, 4, 9mulcanapi 8802 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4741, 46mpbi 145 . . . 4 (9 / 10) = (1 − (1 / 10))
4832, 47oveq12i 6006 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
49 9pos 9202 . . . . . 6 0 < 9
5042, 3, 49, 8divgt0ii 9054 . . . . 5 0 < (9 / 10)
5143, 50gt0ap0ii 8763 . . . 4 (9 / 10) # 0
5244, 51dividapi 8880 . . 3 ((9 / 10) / (9 / 10)) = 1
5331, 48, 523eqtr2i 2256 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5417, 53eqtri 2250 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5314  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   · cmul 7992   < clt 8169  cle 8170  cmin 8305   # cap 8716   / cdiv 8807  cn 9098  9c9 9156  cdc 9566  cexp 10747  abscabs 11494  Σcsu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator