ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... GIF version

Theorem 0.999... 11462
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 8945 . . . . . 6 9 ∈ ℂ
21a1i 9 . . . . 5 (𝑘 ∈ ℕ → 9 ∈ ℂ)
3 10re 9340 . . . . . . . 8 10 ∈ ℝ
43recni 7911 . . . . . . 7 10 ∈ ℂ
54a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
6 nnnn0 9121 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
75, 6expcld 10588 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
8 10pos 9338 . . . . . . . 8 0 < 10
93, 8gt0ap0ii 8526 . . . . . . 7 10 # 0
109a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 # 0)
11 nnz 9210 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
125, 10, 11expap0d 10594 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) # 0)
132, 7, 12divrecapd 8689 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
145, 10, 11exprecapd 10596 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1514oveq2d 5858 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1613, 15eqtr4d 2201 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1716sumeq2i 11305 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
183, 9rerecclapi 8673 . . . . 5 (1 / 10) ∈ ℝ
1918recni 7911 . . . 4 (1 / 10) ∈ ℂ
20 0re 7899 . . . . . . 7 0 ∈ ℝ
213, 8recgt0ii 8802 . . . . . . 7 0 < (1 / 10)
2220, 18, 21ltleii 8001 . . . . . 6 0 ≤ (1 / 10)
2318absidi 11068 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2422, 23ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
25 1lt10 9460 . . . . . 6 1 < 10
26 recgt1 8792 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
273, 8, 26mp2an 423 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2825, 27mpbi 144 . . . . 5 (1 / 10) < 1
2924, 28eqbrtri 4003 . . . 4 (abs‘(1 / 10)) < 1
30 geoisum1c 11461 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
311, 19, 29, 30mp3an 1327 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
321, 4, 9divrecapi 8653 . . . 4 (9 / 10) = (9 · (1 / 10))
331, 4, 9divcanap2i 8651 . . . . . 6 (10 · (9 / 10)) = 9
34 ax-1cn 7846 . . . . . . . 8 1 ∈ ℂ
354, 34, 19subdii 8305 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
364mulid1i 7901 . . . . . . . 8 (10 · 1) = 10
374, 9recidapi 8639 . . . . . . . 8 (10 · (1 / 10)) = 1
3836, 37oveq12i 5854 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
39 10m1e9 9417 . . . . . . 7 (10 − 1) = 9
4035, 38, 393eqtrri 2191 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4133, 40eqtri 2186 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
42 9re 8944 . . . . . . . 8 9 ∈ ℝ
4342, 3, 9redivclapi 8675 . . . . . . 7 (9 / 10) ∈ ℝ
4443recni 7911 . . . . . 6 (9 / 10) ∈ ℂ
4534, 19subcli 8174 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4644, 45, 4, 9mulcanapi 8564 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4741, 46mpbi 144 . . . 4 (9 / 10) = (1 − (1 / 10))
4832, 47oveq12i 5854 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
49 9pos 8961 . . . . . 6 0 < 9
5042, 3, 49, 8divgt0ii 8814 . . . . 5 0 < (9 / 10)
5143, 50gt0ap0ii 8526 . . . 4 (9 / 10) # 0
5244, 51dividapi 8641 . . 3 ((9 / 10) / (9 / 10)) = 1
5331, 48, 523eqtr2i 2192 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5417, 53eqtri 2186 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   · cmul 7758   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  9c9 8915  cdc 9322  cexp 10454  abscabs 10939  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-dec 9323  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator