Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 8966 | . . . . . 6 ⊢ 9 ∈ ℂ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
3 | 10re 9361 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 7932 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
6 | nnnn0 9142 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
7 | 5, 6 | expcld 10609 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
8 | 10pos 9359 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 3, 8 | gt0ap0ii 8547 | . . . . . . 7 ⊢ ;10 # 0 |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
11 | nnz 9231 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 5, 10, 11 | expap0d 10615 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
13 | 2, 7, 12 | divrecapd 8710 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
14 | 5, 10, 11 | exprecapd 10617 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
15 | 14 | oveq2d 5869 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
16 | 13, 15 | eqtr4d 2206 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
17 | 16 | sumeq2i 11327 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
18 | 3, 9 | rerecclapi 8694 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
19 | 18 | recni 7932 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
20 | 0re 7920 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | 3, 8 | recgt0ii 8823 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
22 | 20, 18, 21 | ltleii 8022 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
23 | 18 | absidi 11090 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
25 | 1lt10 9481 | . . . . . 6 ⊢ 1 < ;10 | |
26 | recgt1 8813 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
27 | 3, 8, 26 | mp2an 424 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
28 | 25, 27 | mpbi 144 | . . . . 5 ⊢ (1 / ;10) < 1 |
29 | 24, 28 | eqbrtri 4010 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
30 | geoisum1c 11483 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
31 | 1, 19, 29, 30 | mp3an 1332 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
32 | 1, 4, 9 | divrecapi 8674 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
33 | 1, 4, 9 | divcanap2i 8672 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
34 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
35 | 4, 34, 19 | subdii 8326 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
36 | 4 | mulid1i 7922 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
37 | 4, 9 | recidapi 8660 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
38 | 36, 37 | oveq12i 5865 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
39 | 10m1e9 9438 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
40 | 35, 38, 39 | 3eqtrri 2196 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
41 | 33, 40 | eqtri 2191 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
42 | 9re 8965 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
43 | 42, 3, 9 | redivclapi 8696 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
44 | 43 | recni 7932 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
45 | 34, 19 | subcli 8195 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
46 | 44, 45, 4, 9 | mulcanapi 8585 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
47 | 41, 46 | mpbi 144 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
48 | 32, 47 | oveq12i 5865 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
49 | 9pos 8982 | . . . . . 6 ⊢ 0 < 9 | |
50 | 42, 3, 49, 8 | divgt0ii 8835 | . . . . 5 ⊢ 0 < (9 / ;10) |
51 | 43, 50 | gt0ap0ii 8547 | . . . 4 ⊢ (9 / ;10) # 0 |
52 | 44, 51 | dividapi 8662 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
53 | 31, 48, 52 | 3eqtr2i 2197 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
54 | 17, 53 | eqtri 2191 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 · cmul 7779 < clt 7954 ≤ cle 7955 − cmin 8090 # cap 8500 / cdiv 8589 ℕcn 8878 9c9 8936 ;cdc 9343 ↑cexp 10475 abscabs 10961 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-dec 9344 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |