![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 8978 | . . . . . 6 ⊢ 9 ∈ ℂ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
3 | 10re 9373 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 7944 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
6 | nnnn0 9154 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
7 | 5, 6 | expcld 10621 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
8 | 10pos 9371 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 3, 8 | gt0ap0ii 8559 | . . . . . . 7 ⊢ ;10 # 0 |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
11 | nnz 9243 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 5, 10, 11 | expap0d 10627 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
13 | 2, 7, 12 | divrecapd 8722 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
14 | 5, 10, 11 | exprecapd 10629 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
15 | 14 | oveq2d 5881 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
16 | 13, 15 | eqtr4d 2211 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
17 | 16 | sumeq2i 11338 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
18 | 3, 9 | rerecclapi 8706 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
19 | 18 | recni 7944 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
20 | 0re 7932 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | 3, 8 | recgt0ii 8835 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
22 | 20, 18, 21 | ltleii 8034 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
23 | 18 | absidi 11101 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
25 | 1lt10 9493 | . . . . . 6 ⊢ 1 < ;10 | |
26 | recgt1 8825 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
29 | 24, 28 | eqbrtri 4019 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
30 | geoisum1c 11494 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
31 | 1, 19, 29, 30 | mp3an 1337 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
32 | 1, 4, 9 | divrecapi 8686 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
33 | 1, 4, 9 | divcanap2i 8684 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
34 | ax-1cn 7879 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
35 | 4, 34, 19 | subdii 8338 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
36 | 4 | mulid1i 7934 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
37 | 4, 9 | recidapi 8672 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
38 | 36, 37 | oveq12i 5877 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
39 | 10m1e9 9450 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
40 | 35, 38, 39 | 3eqtrri 2201 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
41 | 33, 40 | eqtri 2196 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
42 | 9re 8977 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
43 | 42, 3, 9 | redivclapi 8708 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
44 | 43 | recni 7944 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
45 | 34, 19 | subcli 8207 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
46 | 44, 45, 4, 9 | mulcanapi 8597 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
48 | 32, 47 | oveq12i 5877 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
49 | 9pos 8994 | . . . . . 6 ⊢ 0 < 9 | |
50 | 42, 3, 49, 8 | divgt0ii 8847 | . . . . 5 ⊢ 0 < (9 / ;10) |
51 | 43, 50 | gt0ap0ii 8559 | . . . 4 ⊢ (9 / ;10) # 0 |
52 | 44, 51 | dividapi 8674 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
53 | 31, 48, 52 | 3eqtr2i 2202 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
54 | 17, 53 | eqtri 2196 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 1c1 7787 · cmul 7791 < clt 7966 ≤ cle 7967 − cmin 8102 # cap 8512 / cdiv 8601 ℕcn 8890 9c9 8948 ;cdc 9355 ↑cexp 10487 abscabs 10972 Σcsu 11327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-oadd 6411 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-n0 9148 df-z 9225 df-dec 9356 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fzo 10111 df-seqfrec 10414 df-exp 10488 df-ihash 10722 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-clim 11253 df-sumdc 11328 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |