ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... GIF version

Theorem 0.999... 11882
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 9137 . . . . . 6 9 ∈ ℂ
21a1i 9 . . . . 5 (𝑘 ∈ ℕ → 9 ∈ ℂ)
3 10re 9535 . . . . . . . 8 10 ∈ ℝ
43recni 8097 . . . . . . 7 10 ∈ ℂ
54a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
6 nnnn0 9315 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
75, 6expcld 10831 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
8 10pos 9533 . . . . . . . 8 0 < 10
93, 8gt0ap0ii 8714 . . . . . . 7 10 # 0
109a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 # 0)
11 nnz 9404 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
125, 10, 11expap0d 10837 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) # 0)
132, 7, 12divrecapd 8879 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
145, 10, 11exprecapd 10839 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1514oveq2d 5970 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1613, 15eqtr4d 2242 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1716sumeq2i 11725 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
183, 9rerecclapi 8863 . . . . 5 (1 / 10) ∈ ℝ
1918recni 8097 . . . 4 (1 / 10) ∈ ℂ
20 0re 8085 . . . . . . 7 0 ∈ ℝ
213, 8recgt0ii 8993 . . . . . . 7 0 < (1 / 10)
2220, 18, 21ltleii 8188 . . . . . 6 0 ≤ (1 / 10)
2318absidi 11487 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2422, 23ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
25 1lt10 9655 . . . . . 6 1 < 10
26 recgt1 8983 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
273, 8, 26mp2an 426 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2825, 27mpbi 145 . . . . 5 (1 / 10) < 1
2924, 28eqbrtri 4069 . . . 4 (abs‘(1 / 10)) < 1
30 geoisum1c 11881 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
311, 19, 29, 30mp3an 1350 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
321, 4, 9divrecapi 8843 . . . 4 (9 / 10) = (9 · (1 / 10))
331, 4, 9divcanap2i 8841 . . . . . 6 (10 · (9 / 10)) = 9
34 ax-1cn 8031 . . . . . . . 8 1 ∈ ℂ
354, 34, 19subdii 8492 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
364mulridi 8087 . . . . . . . 8 (10 · 1) = 10
374, 9recidapi 8829 . . . . . . . 8 (10 · (1 / 10)) = 1
3836, 37oveq12i 5966 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
39 10m1e9 9612 . . . . . . 7 (10 − 1) = 9
4035, 38, 393eqtrri 2232 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4133, 40eqtri 2227 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
42 9re 9136 . . . . . . . 8 9 ∈ ℝ
4342, 3, 9redivclapi 8865 . . . . . . 7 (9 / 10) ∈ ℝ
4443recni 8097 . . . . . 6 (9 / 10) ∈ ℂ
4534, 19subcli 8361 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4644, 45, 4, 9mulcanapi 8753 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4741, 46mpbi 145 . . . 4 (9 / 10) = (1 − (1 / 10))
4832, 47oveq12i 5966 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
49 9pos 9153 . . . . . 6 0 < 9
5042, 3, 49, 8divgt0ii 9005 . . . . 5 0 < (9 / 10)
5143, 50gt0ap0ii 8714 . . . 4 (9 / 10) # 0
5244, 51dividapi 8831 . . 3 ((9 / 10) / (9 / 10)) = 1
5331, 48, 523eqtr2i 2233 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5417, 53eqtri 2227 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177   class class class wbr 4048  cfv 5277  (class class class)co 5954  cc 7936  cr 7937  0cc0 7938  1c1 7939   · cmul 7943   < clt 8120  cle 8121  cmin 8256   # cap 8667   / cdiv 8758  cn 9049  9c9 9107  cdc 9517  cexp 10696  abscabs 11358  Σcsu 11714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-z 9386  df-dec 9518  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator