| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9078 | . . . . . 6 ⊢ 9 ∈ ℂ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
| 3 | 10re 9475 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 8038 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 6 | nnnn0 9256 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 7 | 5, 6 | expcld 10765 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 8 | 10pos 9473 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 3, 8 | gt0ap0ii 8655 | . . . . . . 7 ⊢ ;10 # 0 |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
| 11 | nnz 9345 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 5, 10, 11 | expap0d 10771 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
| 13 | 2, 7, 12 | divrecapd 8820 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 14 | 5, 10, 11 | exprecapd 10773 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 15 | 14 | oveq2d 5938 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 16 | 13, 15 | eqtr4d 2232 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 17 | 16 | sumeq2i 11529 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 18 | 3, 9 | rerecclapi 8804 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 19 | 18 | recni 8038 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 20 | 0re 8026 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 21 | 3, 8 | recgt0ii 8934 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 22 | 20, 18, 21 | ltleii 8129 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 23 | 18 | absidi 11291 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 25 | 1lt10 9595 | . . . . . 6 ⊢ 1 < ;10 | |
| 26 | recgt1 8924 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 29 | 24, 28 | eqbrtri 4054 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 30 | geoisum1c 11685 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 31 | 1, 19, 29, 30 | mp3an 1348 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 32 | 1, 4, 9 | divrecapi 8784 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 33 | 1, 4, 9 | divcanap2i 8782 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 34 | ax-1cn 7972 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 35 | 4, 34, 19 | subdii 8433 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 36 | 4 | mulridi 8028 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 37 | 4, 9 | recidapi 8770 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 38 | 36, 37 | oveq12i 5934 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 39 | 10m1e9 9552 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 40 | 35, 38, 39 | 3eqtrri 2222 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 41 | 33, 40 | eqtri 2217 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 42 | 9re 9077 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 43 | 42, 3, 9 | redivclapi 8806 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 44 | 43 | recni 8038 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 45 | 34, 19 | subcli 8302 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 46 | 44, 45, 4, 9 | mulcanapi 8694 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 48 | 32, 47 | oveq12i 5934 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 49 | 9pos 9094 | . . . . . 6 ⊢ 0 < 9 | |
| 50 | 42, 3, 49, 8 | divgt0ii 8946 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 51 | 43, 50 | gt0ap0ii 8655 | . . . 4 ⊢ (9 / ;10) # 0 |
| 52 | 44, 51 | dividapi 8772 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 53 | 31, 48, 52 | 3eqtr2i 2223 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 54 | 17, 53 | eqtri 2217 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 1c1 7880 · cmul 7884 < clt 8061 ≤ cle 8062 − cmin 8197 # cap 8608 / cdiv 8699 ℕcn 8990 9c9 9048 ;cdc 9457 ↑cexp 10630 abscabs 11162 Σcsu 11518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |