ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... GIF version

Theorem 0.999... 11703
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 9095 . . . . . 6 9 ∈ ℂ
21a1i 9 . . . . 5 (𝑘 ∈ ℕ → 9 ∈ ℂ)
3 10re 9492 . . . . . . . 8 10 ∈ ℝ
43recni 8055 . . . . . . 7 10 ∈ ℂ
54a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
6 nnnn0 9273 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
75, 6expcld 10782 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
8 10pos 9490 . . . . . . . 8 0 < 10
93, 8gt0ap0ii 8672 . . . . . . 7 10 # 0
109a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 # 0)
11 nnz 9362 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
125, 10, 11expap0d 10788 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) # 0)
132, 7, 12divrecapd 8837 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
145, 10, 11exprecapd 10790 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1514oveq2d 5941 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1613, 15eqtr4d 2232 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1716sumeq2i 11546 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
183, 9rerecclapi 8821 . . . . 5 (1 / 10) ∈ ℝ
1918recni 8055 . . . 4 (1 / 10) ∈ ℂ
20 0re 8043 . . . . . . 7 0 ∈ ℝ
213, 8recgt0ii 8951 . . . . . . 7 0 < (1 / 10)
2220, 18, 21ltleii 8146 . . . . . 6 0 ≤ (1 / 10)
2318absidi 11308 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2422, 23ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
25 1lt10 9612 . . . . . 6 1 < 10
26 recgt1 8941 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
273, 8, 26mp2an 426 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2825, 27mpbi 145 . . . . 5 (1 / 10) < 1
2924, 28eqbrtri 4055 . . . 4 (abs‘(1 / 10)) < 1
30 geoisum1c 11702 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
311, 19, 29, 30mp3an 1348 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
321, 4, 9divrecapi 8801 . . . 4 (9 / 10) = (9 · (1 / 10))
331, 4, 9divcanap2i 8799 . . . . . 6 (10 · (9 / 10)) = 9
34 ax-1cn 7989 . . . . . . . 8 1 ∈ ℂ
354, 34, 19subdii 8450 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
364mulridi 8045 . . . . . . . 8 (10 · 1) = 10
374, 9recidapi 8787 . . . . . . . 8 (10 · (1 / 10)) = 1
3836, 37oveq12i 5937 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
39 10m1e9 9569 . . . . . . 7 (10 − 1) = 9
4035, 38, 393eqtrri 2222 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4133, 40eqtri 2217 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
42 9re 9094 . . . . . . . 8 9 ∈ ℝ
4342, 3, 9redivclapi 8823 . . . . . . 7 (9 / 10) ∈ ℝ
4443recni 8055 . . . . . 6 (9 / 10) ∈ ℂ
4534, 19subcli 8319 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4644, 45, 4, 9mulcanapi 8711 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4741, 46mpbi 145 . . . 4 (9 / 10) = (1 − (1 / 10))
4832, 47oveq12i 5937 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
49 9pos 9111 . . . . . 6 0 < 9
5042, 3, 49, 8divgt0ii 8963 . . . . 5 0 < (9 / 10)
5143, 50gt0ap0ii 8672 . . . 4 (9 / 10) # 0
5244, 51dividapi 8789 . . 3 ((9 / 10) / (9 / 10)) = 1
5331, 48, 523eqtr2i 2223 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5417, 53eqtri 2217 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   · cmul 7901   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  cn 9007  9c9 9065  cdc 9474  cexp 10647  abscabs 11179  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator