ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... GIF version

Theorem 0.999... 11495
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 8978 . . . . . 6 9 ∈ ℂ
21a1i 9 . . . . 5 (𝑘 ∈ ℕ → 9 ∈ ℂ)
3 10re 9373 . . . . . . . 8 10 ∈ ℝ
43recni 7944 . . . . . . 7 10 ∈ ℂ
54a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
6 nnnn0 9154 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
75, 6expcld 10621 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
8 10pos 9371 . . . . . . . 8 0 < 10
93, 8gt0ap0ii 8559 . . . . . . 7 10 # 0
109a1i 9 . . . . . 6 (𝑘 ∈ ℕ → 10 # 0)
11 nnz 9243 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
125, 10, 11expap0d 10627 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) # 0)
132, 7, 12divrecapd 8722 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
145, 10, 11exprecapd 10629 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1514oveq2d 5881 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1613, 15eqtr4d 2211 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1716sumeq2i 11338 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
183, 9rerecclapi 8706 . . . . 5 (1 / 10) ∈ ℝ
1918recni 7944 . . . 4 (1 / 10) ∈ ℂ
20 0re 7932 . . . . . . 7 0 ∈ ℝ
213, 8recgt0ii 8835 . . . . . . 7 0 < (1 / 10)
2220, 18, 21ltleii 8034 . . . . . 6 0 ≤ (1 / 10)
2318absidi 11101 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2422, 23ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
25 1lt10 9493 . . . . . 6 1 < 10
26 recgt1 8825 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
273, 8, 26mp2an 426 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2825, 27mpbi 145 . . . . 5 (1 / 10) < 1
2924, 28eqbrtri 4019 . . . 4 (abs‘(1 / 10)) < 1
30 geoisum1c 11494 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
311, 19, 29, 30mp3an 1337 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
321, 4, 9divrecapi 8686 . . . 4 (9 / 10) = (9 · (1 / 10))
331, 4, 9divcanap2i 8684 . . . . . 6 (10 · (9 / 10)) = 9
34 ax-1cn 7879 . . . . . . . 8 1 ∈ ℂ
354, 34, 19subdii 8338 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
364mulid1i 7934 . . . . . . . 8 (10 · 1) = 10
374, 9recidapi 8672 . . . . . . . 8 (10 · (1 / 10)) = 1
3836, 37oveq12i 5877 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
39 10m1e9 9450 . . . . . . 7 (10 − 1) = 9
4035, 38, 393eqtrri 2201 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4133, 40eqtri 2196 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
42 9re 8977 . . . . . . . 8 9 ∈ ℝ
4342, 3, 9redivclapi 8708 . . . . . . 7 (9 / 10) ∈ ℝ
4443recni 7944 . . . . . 6 (9 / 10) ∈ ℂ
4534, 19subcli 8207 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4644, 45, 4, 9mulcanapi 8597 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4741, 46mpbi 145 . . . 4 (9 / 10) = (1 − (1 / 10))
4832, 47oveq12i 5877 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
49 9pos 8994 . . . . . 6 0 < 9
5042, 3, 49, 8divgt0ii 8847 . . . . 5 0 < (9 / 10)
5143, 50gt0ap0ii 8559 . . . 4 (9 / 10) # 0
5244, 51dividapi 8674 . . 3 ((9 / 10) / (9 / 10)) = 1
5331, 48, 523eqtr2i 2202 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5417, 53eqtri 2196 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2146   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  cr 7785  0cc0 7786  1c1 7787   · cmul 7791   < clt 7966  cle 7967  cmin 8102   # cap 8512   / cdiv 8601  cn 8890  9c9 8948  cdc 9355  cexp 10487  abscabs 10972  Σcsu 11327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-5 8952  df-6 8953  df-7 8954  df-8 8955  df-9 8956  df-n0 9148  df-z 9225  df-dec 9356  df-uz 9500  df-q 9591  df-rp 9623  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-ihash 10722  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-sumdc 11328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator