![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 9072 | . . . . . 6 ⊢ 9 ∈ ℂ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
3 | 10re 9469 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 8033 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
6 | nnnn0 9250 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
7 | 5, 6 | expcld 10747 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
8 | 10pos 9467 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 3, 8 | gt0ap0ii 8649 | . . . . . . 7 ⊢ ;10 # 0 |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
11 | nnz 9339 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 5, 10, 11 | expap0d 10753 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
13 | 2, 7, 12 | divrecapd 8814 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
14 | 5, 10, 11 | exprecapd 10755 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
15 | 14 | oveq2d 5935 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
16 | 13, 15 | eqtr4d 2229 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
17 | 16 | sumeq2i 11510 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
18 | 3, 9 | rerecclapi 8798 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
19 | 18 | recni 8033 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
20 | 0re 8021 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | 3, 8 | recgt0ii 8928 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
22 | 20, 18, 21 | ltleii 8124 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
23 | 18 | absidi 11273 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
25 | 1lt10 9589 | . . . . . 6 ⊢ 1 < ;10 | |
26 | recgt1 8918 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
29 | 24, 28 | eqbrtri 4051 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
30 | geoisum1c 11666 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
31 | 1, 19, 29, 30 | mp3an 1348 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
32 | 1, 4, 9 | divrecapi 8778 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
33 | 1, 4, 9 | divcanap2i 8776 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
34 | ax-1cn 7967 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
35 | 4, 34, 19 | subdii 8428 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
36 | 4 | mulid1i 8023 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
37 | 4, 9 | recidapi 8764 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
38 | 36, 37 | oveq12i 5931 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
39 | 10m1e9 9546 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
40 | 35, 38, 39 | 3eqtrri 2219 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
41 | 33, 40 | eqtri 2214 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
42 | 9re 9071 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
43 | 42, 3, 9 | redivclapi 8800 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
44 | 43 | recni 8033 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
45 | 34, 19 | subcli 8297 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
46 | 44, 45, 4, 9 | mulcanapi 8688 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
48 | 32, 47 | oveq12i 5931 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
49 | 9pos 9088 | . . . . . 6 ⊢ 0 < 9 | |
50 | 42, 3, 49, 8 | divgt0ii 8940 | . . . . 5 ⊢ 0 < (9 / ;10) |
51 | 43, 50 | gt0ap0ii 8649 | . . . 4 ⊢ (9 / ;10) # 0 |
52 | 44, 51 | dividapi 8766 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
53 | 31, 48, 52 | 3eqtr2i 2220 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
54 | 17, 53 | eqtri 2214 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 · cmul 7879 < clt 8056 ≤ cle 8057 − cmin 8192 # cap 8602 / cdiv 8693 ℕcn 8984 9c9 9042 ;cdc 9451 ↑cexp 10612 abscabs 11144 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |