Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 8945 | . . . . . 6 ⊢ 9 ∈ ℂ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
3 | 10re 9340 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 7911 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
6 | nnnn0 9121 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
7 | 5, 6 | expcld 10588 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
8 | 10pos 9338 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 3, 8 | gt0ap0ii 8526 | . . . . . . 7 ⊢ ;10 # 0 |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
11 | nnz 9210 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 5, 10, 11 | expap0d 10594 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
13 | 2, 7, 12 | divrecapd 8689 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
14 | 5, 10, 11 | exprecapd 10596 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
15 | 14 | oveq2d 5858 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
16 | 13, 15 | eqtr4d 2201 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
17 | 16 | sumeq2i 11305 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
18 | 3, 9 | rerecclapi 8673 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
19 | 18 | recni 7911 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
20 | 0re 7899 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | 3, 8 | recgt0ii 8802 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
22 | 20, 18, 21 | ltleii 8001 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
23 | 18 | absidi 11068 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
25 | 1lt10 9460 | . . . . . 6 ⊢ 1 < ;10 | |
26 | recgt1 8792 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
27 | 3, 8, 26 | mp2an 423 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
28 | 25, 27 | mpbi 144 | . . . . 5 ⊢ (1 / ;10) < 1 |
29 | 24, 28 | eqbrtri 4003 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
30 | geoisum1c 11461 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
31 | 1, 19, 29, 30 | mp3an 1327 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
32 | 1, 4, 9 | divrecapi 8653 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
33 | 1, 4, 9 | divcanap2i 8651 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
34 | ax-1cn 7846 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
35 | 4, 34, 19 | subdii 8305 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
36 | 4 | mulid1i 7901 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
37 | 4, 9 | recidapi 8639 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
38 | 36, 37 | oveq12i 5854 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
39 | 10m1e9 9417 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
40 | 35, 38, 39 | 3eqtrri 2191 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
41 | 33, 40 | eqtri 2186 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
42 | 9re 8944 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
43 | 42, 3, 9 | redivclapi 8675 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
44 | 43 | recni 7911 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
45 | 34, 19 | subcli 8174 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
46 | 44, 45, 4, 9 | mulcanapi 8564 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
47 | 41, 46 | mpbi 144 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
48 | 32, 47 | oveq12i 5854 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
49 | 9pos 8961 | . . . . . 6 ⊢ 0 < 9 | |
50 | 42, 3, 49, 8 | divgt0ii 8814 | . . . . 5 ⊢ 0 < (9 / ;10) |
51 | 43, 50 | gt0ap0ii 8526 | . . . 4 ⊢ (9 / ;10) # 0 |
52 | 44, 51 | dividapi 8641 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
53 | 31, 48, 52 | 3eqtr2i 2192 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
54 | 17, 53 | eqtri 2186 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 · cmul 7758 < clt 7933 ≤ cle 7934 − cmin 8069 # cap 8479 / cdiv 8568 ℕcn 8857 9c9 8915 ;cdc 9322 ↑cexp 10454 abscabs 10939 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-dec 9323 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |