| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9206 | . . . . . 6 ⊢ 9 ∈ ℂ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
| 3 | 10re 9604 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 8166 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 6 | nnnn0 9384 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 7 | 5, 6 | expcld 10903 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 8 | 10pos 9602 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 3, 8 | gt0ap0ii 8783 | . . . . . . 7 ⊢ ;10 # 0 |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
| 11 | nnz 9473 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 5, 10, 11 | expap0d 10909 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
| 13 | 2, 7, 12 | divrecapd 8948 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 14 | 5, 10, 11 | exprecapd 10911 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 15 | 14 | oveq2d 6023 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 16 | 13, 15 | eqtr4d 2265 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 17 | 16 | sumeq2i 11883 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 18 | 3, 9 | rerecclapi 8932 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 19 | 18 | recni 8166 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 20 | 0re 8154 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 21 | 3, 8 | recgt0ii 9062 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 22 | 20, 18, 21 | ltleii 8257 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 23 | 18 | absidi 11645 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 25 | 1lt10 9724 | . . . . . 6 ⊢ 1 < ;10 | |
| 26 | recgt1 9052 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 29 | 24, 28 | eqbrtri 4104 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 30 | geoisum1c 12039 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 31 | 1, 19, 29, 30 | mp3an 1371 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 32 | 1, 4, 9 | divrecapi 8912 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 33 | 1, 4, 9 | divcanap2i 8910 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 34 | ax-1cn 8100 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 35 | 4, 34, 19 | subdii 8561 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 36 | 4 | mulridi 8156 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 37 | 4, 9 | recidapi 8898 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 38 | 36, 37 | oveq12i 6019 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 39 | 10m1e9 9681 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 40 | 35, 38, 39 | 3eqtrri 2255 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 41 | 33, 40 | eqtri 2250 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 42 | 9re 9205 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 43 | 42, 3, 9 | redivclapi 8934 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 44 | 43 | recni 8166 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 45 | 34, 19 | subcli 8430 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 46 | 44, 45, 4, 9 | mulcanapi 8822 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 48 | 32, 47 | oveq12i 6019 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 49 | 9pos 9222 | . . . . . 6 ⊢ 0 < 9 | |
| 50 | 42, 3, 49, 8 | divgt0ii 9074 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 51 | 43, 50 | gt0ap0ii 8783 | . . . 4 ⊢ (9 / ;10) # 0 |
| 52 | 44, 51 | dividapi 8900 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 53 | 31, 48, 52 | 3eqtr2i 2256 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 54 | 17, 53 | eqtri 2250 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 ℝcr 8006 0cc0 8007 1c1 8008 · cmul 8012 < clt 8189 ≤ cle 8190 − cmin 8325 # cap 8736 / cdiv 8827 ℕcn 9118 9c9 9176 ;cdc 9586 ↑cexp 10768 abscabs 11516 Σcsu 11872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |