| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9095 | . . . . . 6 ⊢ 9 ∈ ℂ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
| 3 | 10re 9492 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 8055 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 6 | nnnn0 9273 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 7 | 5, 6 | expcld 10782 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 8 | 10pos 9490 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 3, 8 | gt0ap0ii 8672 | . . . . . . 7 ⊢ ;10 # 0 |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
| 11 | nnz 9362 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 5, 10, 11 | expap0d 10788 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
| 13 | 2, 7, 12 | divrecapd 8837 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 14 | 5, 10, 11 | exprecapd 10790 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 15 | 14 | oveq2d 5941 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 16 | 13, 15 | eqtr4d 2232 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 17 | 16 | sumeq2i 11546 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 18 | 3, 9 | rerecclapi 8821 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 19 | 18 | recni 8055 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 20 | 0re 8043 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 21 | 3, 8 | recgt0ii 8951 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 22 | 20, 18, 21 | ltleii 8146 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 23 | 18 | absidi 11308 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 25 | 1lt10 9612 | . . . . . 6 ⊢ 1 < ;10 | |
| 26 | recgt1 8941 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 29 | 24, 28 | eqbrtri 4055 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 30 | geoisum1c 11702 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 31 | 1, 19, 29, 30 | mp3an 1348 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 32 | 1, 4, 9 | divrecapi 8801 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 33 | 1, 4, 9 | divcanap2i 8799 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 34 | ax-1cn 7989 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 35 | 4, 34, 19 | subdii 8450 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 36 | 4 | mulridi 8045 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 37 | 4, 9 | recidapi 8787 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 38 | 36, 37 | oveq12i 5937 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 39 | 10m1e9 9569 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 40 | 35, 38, 39 | 3eqtrri 2222 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 41 | 33, 40 | eqtri 2217 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 42 | 9re 9094 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 43 | 42, 3, 9 | redivclapi 8823 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 44 | 43 | recni 8055 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 45 | 34, 19 | subcli 8319 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 46 | 44, 45, 4, 9 | mulcanapi 8711 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 48 | 32, 47 | oveq12i 5937 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 49 | 9pos 9111 | . . . . . 6 ⊢ 0 < 9 | |
| 50 | 42, 3, 49, 8 | divgt0ii 8963 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 51 | 43, 50 | gt0ap0ii 8672 | . . . 4 ⊢ (9 / ;10) # 0 |
| 52 | 44, 51 | dividapi 8789 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 53 | 31, 48, 52 | 3eqtr2i 2223 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 54 | 17, 53 | eqtri 2217 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 · cmul 7901 < clt 8078 ≤ cle 8079 − cmin 8214 # cap 8625 / cdiv 8716 ℕcn 9007 9c9 9065 ;cdc 9474 ↑cexp 10647 abscabs 11179 Σcsu 11535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |