![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0.999... | GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 9009 | . . . . . 6 ⊢ 9 ∈ ℂ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 9 ∈ ℂ) |
3 | 10re 9404 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 7971 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
6 | nnnn0 9185 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
7 | 5, 6 | expcld 10656 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
8 | 10pos 9402 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 3, 8 | gt0ap0ii 8587 | . . . . . . 7 ⊢ ;10 # 0 |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 # 0) |
11 | nnz 9274 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 5, 10, 11 | expap0d 10662 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) # 0) |
13 | 2, 7, 12 | divrecapd 8752 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
14 | 5, 10, 11 | exprecapd 10664 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
15 | 14 | oveq2d 5893 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
16 | 13, 15 | eqtr4d 2213 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
17 | 16 | sumeq2i 11374 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
18 | 3, 9 | rerecclapi 8736 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
19 | 18 | recni 7971 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
20 | 0re 7959 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | 3, 8 | recgt0ii 8866 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
22 | 20, 18, 21 | ltleii 8062 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
23 | 18 | absidi 11137 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
25 | 1lt10 9524 | . . . . . 6 ⊢ 1 < ;10 | |
26 | recgt1 8856 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
27 | 3, 8, 26 | mp2an 426 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
28 | 25, 27 | mpbi 145 | . . . . 5 ⊢ (1 / ;10) < 1 |
29 | 24, 28 | eqbrtri 4026 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
30 | geoisum1c 11530 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
31 | 1, 19, 29, 30 | mp3an 1337 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
32 | 1, 4, 9 | divrecapi 8716 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
33 | 1, 4, 9 | divcanap2i 8714 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
34 | ax-1cn 7906 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
35 | 4, 34, 19 | subdii 8366 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
36 | 4 | mulid1i 7961 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
37 | 4, 9 | recidapi 8702 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
38 | 36, 37 | oveq12i 5889 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
39 | 10m1e9 9481 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
40 | 35, 38, 39 | 3eqtrri 2203 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
41 | 33, 40 | eqtri 2198 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
42 | 9re 9008 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
43 | 42, 3, 9 | redivclapi 8738 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
44 | 43 | recni 7971 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
45 | 34, 19 | subcli 8235 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
46 | 44, 45, 4, 9 | mulcanapi 8626 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
47 | 41, 46 | mpbi 145 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
48 | 32, 47 | oveq12i 5889 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
49 | 9pos 9025 | . . . . . 6 ⊢ 0 < 9 | |
50 | 42, 3, 49, 8 | divgt0ii 8878 | . . . . 5 ⊢ 0 < (9 / ;10) |
51 | 43, 50 | gt0ap0ii 8587 | . . . 4 ⊢ (9 / ;10) # 0 |
52 | 44, 51 | dividapi 8704 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
53 | 31, 48, 52 | 3eqtr2i 2204 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
54 | 17, 53 | eqtri 2198 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 ℂcc 7811 ℝcr 7812 0cc0 7813 1c1 7814 · cmul 7818 < clt 7994 ≤ cle 7995 − cmin 8130 # cap 8540 / cdiv 8631 ℕcn 8921 9c9 8979 ;cdc 9386 ↑cexp 10521 abscabs 11008 Σcsu 11363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-dec 9387 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |