ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr2i GIF version

Theorem 3eqtr2i 2223
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
Hypotheses
Ref Expression
3eqtr2i.1 𝐴 = 𝐵
3eqtr2i.2 𝐶 = 𝐵
3eqtr2i.3 𝐶 = 𝐷
Assertion
Ref Expression
3eqtr2i 𝐴 = 𝐷

Proof of Theorem 3eqtr2i
StepHypRef Expression
1 3eqtr2i.1 . . 3 𝐴 = 𝐵
2 3eqtr2i.2 . . 3 𝐶 = 𝐵
31, 2eqtr4i 2220 . 2 𝐴 = 𝐶
4 3eqtr2i.3 . 2 𝐶 = 𝐷
53, 4eqtri 2217 1 𝐴 = 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  dfrab3  3440  iunid  3973  cnvcnv  5123  cocnvcnv2  5182  fmptap  5755  exmidfodomrlemim  7282  negdii  8329  halfpm6th  9230  numma  9519  numaddc  9523  6p5lem  9545  8p2e10  9555  binom2i  10759  0.999...  11705  flodddiv4  12120  6gcd4e2  12189  dfphi2  12415  karatsuba  12626  cosq23lt0  15177  pigt3  15188  1sgm2ppw  15339  2lgsoddprmlem3c  15458  2lgsoddprmlem3d  15459  nninfomni  15774
  Copyright terms: Public domain W3C validator