| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2253 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2250 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: dfrab3 3480 iunid 4020 cnvcnv 5180 cocnvcnv2 5239 fmptap 5828 exmidfodomrlemim 7375 negdii 8426 halfpm6th 9327 numma 9617 numaddc 9621 6p5lem 9643 8p2e10 9653 binom2i 10865 0.999... 12027 flodddiv4 12442 6gcd4e2 12511 dfphi2 12737 karatsuba 12948 cosq23lt0 15501 pigt3 15512 1sgm2ppw 15663 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 nninfomni 16344 |
| Copyright terms: Public domain | W3C validator |