| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2230 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2227 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: dfrab3 3453 iunid 3989 cnvcnv 5144 cocnvcnv2 5203 fmptap 5787 exmidfodomrlemim 7325 negdii 8376 halfpm6th 9277 numma 9567 numaddc 9571 6p5lem 9593 8p2e10 9603 binom2i 10815 0.999... 11907 flodddiv4 12322 6gcd4e2 12391 dfphi2 12617 karatsuba 12828 cosq23lt0 15380 pigt3 15391 1sgm2ppw 15542 2lgsoddprmlem3c 15661 2lgsoddprmlem3d 15662 nninfomni 16097 |
| Copyright terms: Public domain | W3C validator |