Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2181 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2178 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: dfrab3 3383 iunid 3904 cnvcnv 5037 cocnvcnv2 5096 fmptap 5656 exmidfodomrlemim 7130 negdii 8153 halfpm6th 9047 numma 9332 numaddc 9336 6p5lem 9358 8p2e10 9368 binom2i 10520 0.999... 11411 flodddiv4 11817 6gcd4e2 11870 dfphi2 12083 txswaphmeolem 12691 cosq23lt0 13125 pigt3 13136 nninfomni 13562 |
Copyright terms: Public domain | W3C validator |