| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2220 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2217 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: dfrab3 3440 iunid 3973 cnvcnv 5123 cocnvcnv2 5182 fmptap 5755 exmidfodomrlemim 7282 negdii 8329 halfpm6th 9230 numma 9519 numaddc 9523 6p5lem 9545 8p2e10 9555 binom2i 10759 0.999... 11705 flodddiv4 12120 6gcd4e2 12189 dfphi2 12415 karatsuba 12626 cosq23lt0 15177 pigt3 15188 1sgm2ppw 15339 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 nninfomni 15774 |
| Copyright terms: Public domain | W3C validator |