ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alimdv GIF version

Theorem alimdv 1879
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
alimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alimdv (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem alimdv
StepHypRef Expression
1 ax-17 1526 . 2 (𝜑 → ∀𝑥𝜑)
2 alimdv.1 . 2 (𝜑 → (𝜓𝜒))
31, 2alimdh 1467 1 (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1447  ax-gen 1449  ax-17 1526
This theorem is referenced by:  2alimdv  1881  moim  2090  ralimdv2  2547  sstr2  3164  reuss2  3417  ssuni  3833  disjss2  3985  disjss1  3988  disjiun  4000  exmidsssnc  4205  soss  4316  alxfr  4463  ssrel  4716  ssrel2  4718  ssrelrel  4728  iotaval  5191  omnimkv  7156
  Copyright terms: Public domain W3C validator