ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alimdv GIF version

Theorem alimdv 1867
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
alimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alimdv (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem alimdv
StepHypRef Expression
1 ax-17 1514 . 2 (𝜑 → ∀𝑥𝜑)
2 alimdv.1 . 2 (𝜑 → (𝜓𝜒))
31, 2alimdh 1455 1 (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1435  ax-gen 1437  ax-17 1514
This theorem is referenced by:  2alimdv  1869  moim  2078  ralimdv2  2536  sstr2  3149  reuss2  3402  ssuni  3811  disjss2  3962  disjss1  3965  disjiun  3977  exmidsssnc  4182  soss  4292  alxfr  4439  ssrel  4692  ssrel2  4694  ssrelrel  4704  iotaval  5164  omnimkv  7120
  Copyright terms: Public domain W3C validator