Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssuni | GIF version |
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | imbi1d 230 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶))) |
3 | elunii 3794 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ ∪ 𝐶) | |
4 | 3 | expcom 115 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶)) |
5 | 2, 4 | vtoclga 2792 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶)) |
6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
7 | 6 | alimdv 1867 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
8 | dfss2 3131 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
9 | dfss2 3131 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶)) | |
10 | 7, 8, 9 | 3imtr4g 204 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) |
11 | 10 | impcom 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: elssuni 3817 uniss2 3820 ssorduni 4464 |
Copyright terms: Public domain | W3C validator |