| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssuni | GIF version | ||
| Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2260 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶))) | 
| 3 | elunii 3844 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ ∪ 𝐶) | |
| 4 | 3 | expcom 116 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶)) | 
| 5 | 2, 4 | vtoclga 2830 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶)) | 
| 6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) | 
| 7 | 6 | alimdv 1893 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) | 
| 8 | dfss2 3172 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 9 | dfss2 3172 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶)) | |
| 10 | 7, 8, 9 | 3imtr4g 205 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) | 
| 11 | 10 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 | 
| This theorem is referenced by: elssuni 3867 uniss2 3870 ssorduni 4523 | 
| Copyright terms: Public domain | W3C validator |