ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni GIF version

Theorem ssuni 3816
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
21imbi1d 230 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑥𝑦 𝐶) ↔ (𝑦𝐵𝑦 𝐶)))
3 elunii 3799 . . . . . . 7 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
43expcom 115 . . . . . 6 (𝑥𝐶 → (𝑦𝑥𝑦 𝐶))
52, 4vtoclga 2796 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦 𝐶))
65imim2d 54 . . . 4 (𝐵𝐶 → ((𝑦𝐴𝑦𝐵) → (𝑦𝐴𝑦 𝐶)))
76alimdv 1872 . . 3 (𝐵𝐶 → (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑦(𝑦𝐴𝑦 𝐶)))
8 dfss2 3136 . . 3 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 3136 . . 3 (𝐴 𝐶 ↔ ∀𝑦(𝑦𝐴𝑦 𝐶))
107, 8, 93imtr4g 204 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
1110impcom 124 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wcel 2141  wss 3121   cuni 3794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-uni 3795
This theorem is referenced by:  elssuni  3822  uniss2  3825  ssorduni  4469
  Copyright terms: Public domain W3C validator