![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssuni | GIF version |
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2241 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | imbi1d 231 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶))) |
3 | elunii 3816 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ ∪ 𝐶) | |
4 | 3 | expcom 116 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶)) |
5 | 2, 4 | vtoclga 2805 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶)) |
6 | 5 | imim2d 54 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
7 | 6 | alimdv 1879 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
8 | dfss2 3146 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
9 | dfss2 3146 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶)) | |
10 | 7, 8, 9 | 3imtr4g 205 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) |
11 | 10 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-uni 3812 |
This theorem is referenced by: elssuni 3839 uniss2 3842 ssorduni 4488 |
Copyright terms: Public domain | W3C validator |