ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni GIF version

Theorem ssuni 3833
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
21imbi1d 231 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑥𝑦 𝐶) ↔ (𝑦𝐵𝑦 𝐶)))
3 elunii 3816 . . . . . . 7 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
43expcom 116 . . . . . 6 (𝑥𝐶 → (𝑦𝑥𝑦 𝐶))
52, 4vtoclga 2805 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦 𝐶))
65imim2d 54 . . . 4 (𝐵𝐶 → ((𝑦𝐴𝑦𝐵) → (𝑦𝐴𝑦 𝐶)))
76alimdv 1879 . . 3 (𝐵𝐶 → (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑦(𝑦𝐴𝑦 𝐶)))
8 dfss2 3146 . . 3 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 3146 . . 3 (𝐴 𝐶 ↔ ∀𝑦(𝑦𝐴𝑦 𝐶))
107, 8, 93imtr4g 205 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
1110impcom 125 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351   = wceq 1353  wcel 2148  wss 3131   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812
This theorem is referenced by:  elssuni  3839  uniss2  3842  ssorduni  4488
  Copyright terms: Public domain W3C validator