ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr2 GIF version

Theorem sstr2 3191
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
sstr2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))

Proof of Theorem sstr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3178 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21imim1d 75 . . 3 (𝐴𝐵 → ((𝑥𝐵𝑥𝐶) → (𝑥𝐴𝑥𝐶)))
32alimdv 1893 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝑥𝐶) → ∀𝑥(𝑥𝐴𝑥𝐶)))
4 ssalel 3172 . 2 (𝐵𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
5 ssalel 3172 . 2 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
63, 4, 53imtr4g 205 1 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2167  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sstr  3192  sstri  3193  sseq1  3207  sseq2  3208  ssun3  3329  ssun4  3330  ssinss1  3393  ssdisj  3508  triun  4145  trintssm  4148  sspwb  4250  exss  4261  relss  4751  funss  5278  funimass2  5337  fss  5422  fiintim  7001  sbthlem2  7033  sbthlemi3  7034  sbthlemi6  7037  lsslss  14013  lspss  14031  tgss  14383  tgcl  14384  tgss3  14398  clsss  14438  neiss  14470  ssnei2  14477  cnpnei  14539  cnptopco  14542  cnptoprest  14559  txcnp  14591  neibl  14811  metcnp3  14831  bj-nntrans  15681
  Copyright terms: Public domain W3C validator