| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | GIF version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imim1d 75 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | 2 | alimdv 1893 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 4 | dfss2 3172 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | dfss2 3172 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sstr 3191 sstri 3192 sseq1 3206 sseq2 3207 ssun3 3328 ssun4 3329 ssinss1 3392 ssdisj 3507 triun 4144 trintssm 4147 sspwb 4249 exss 4260 relss 4750 funss 5277 funimass2 5336 fss 5419 fiintim 6992 sbthlem2 7024 sbthlemi3 7025 sbthlemi6 7028 lsslss 13937 lspss 13955 tgss 14299 tgcl 14300 tgss3 14314 clsss 14354 neiss 14386 ssnei2 14393 cnpnei 14455 cnptopco 14458 cnptoprest 14475 txcnp 14507 neibl 14727 metcnp3 14747 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |