Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstr2 | GIF version |
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 75 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1872 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3136 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3136 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 204 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∈ wcel 2141 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sstr 3155 sstri 3156 sseq1 3170 sseq2 3171 ssun3 3292 ssun4 3293 ssinss1 3356 ssdisj 3471 triun 4100 trintssm 4103 sspwb 4201 exss 4212 relss 4698 funss 5217 funimass2 5276 fss 5359 fiintim 6906 sbthlem2 6935 sbthlemi3 6936 sbthlemi6 6939 tgss 12857 tgcl 12858 tgss3 12872 clsss 12912 neiss 12944 ssnei2 12951 cnpnei 13013 cnptopco 13016 cnptoprest 13033 txcnp 13065 neibl 13285 metcnp3 13305 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |