ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr2 GIF version

Theorem sstr2 3154
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
sstr2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))

Proof of Theorem sstr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21imim1d 75 . . 3 (𝐴𝐵 → ((𝑥𝐵𝑥𝐶) → (𝑥𝐴𝑥𝐶)))
32alimdv 1872 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝑥𝐶) → ∀𝑥(𝑥𝐴𝑥𝐶)))
4 dfss2 3136 . 2 (𝐵𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
5 dfss2 3136 . 2 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
63, 4, 53imtr4g 204 1 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  sstr  3155  sstri  3156  sseq1  3170  sseq2  3171  ssun3  3292  ssun4  3293  ssinss1  3356  ssdisj  3471  triun  4100  trintssm  4103  sspwb  4201  exss  4212  relss  4698  funss  5217  funimass2  5276  fss  5359  fiintim  6906  sbthlem2  6935  sbthlemi3  6936  sbthlemi6  6939  tgss  12857  tgcl  12858  tgss3  12872  clsss  12912  neiss  12944  ssnei2  12951  cnpnei  13013  cnptopco  13016  cnptoprest  13033  txcnp  13065  neibl  13285  metcnp3  13305  bj-nntrans  13986
  Copyright terms: Public domain W3C validator