ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr2 GIF version

Theorem sstr2 3231
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
sstr2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))

Proof of Theorem sstr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21imim1d 75 . . 3 (𝐴𝐵 → ((𝑥𝐵𝑥𝐶) → (𝑥𝐴𝑥𝐶)))
32alimdv 1925 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝑥𝐶) → ∀𝑥(𝑥𝐴𝑥𝐶)))
4 ssalel 3212 . 2 (𝐵𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
5 ssalel 3212 . 2 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
63, 4, 53imtr4g 205 1 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wcel 2200  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sstr  3232  sstri  3233  sseq1  3247  sseq2  3248  ssun3  3369  ssun4  3370  ssinss1  3433  ssdisj  3548  triun  4195  trintssm  4198  sspwb  4302  exss  4313  relss  4806  funss  5337  funimass2  5399  fss  5485  fiintim  7101  sbthlem2  7133  sbthlemi3  7134  sbthlemi6  7137  lsslss  14353  lspss  14371  tgss  14745  tgcl  14746  tgss3  14760  clsss  14800  neiss  14832  ssnei2  14839  cnpnei  14901  cnptopco  14904  cnptoprest  14921  txcnp  14953  neibl  15173  metcnp3  15193  bj-nntrans  16338
  Copyright terms: Public domain W3C validator