ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaval GIF version

Theorem iotaval 5248
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5238 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 vex 2776 . . . . . . 7 𝑦 ∈ V
3 sbeqalb 3056 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
4 equcomi 1728 . . . . . . . 8 (𝑦 = 𝑧𝑧 = 𝑦)
53, 4syl6 33 . . . . . . 7 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦))
62, 5ax-mp 5 . . . . . 6 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦)
76ex 115 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = 𝑦))
8 equequ2 1737 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
98equcoms 1732 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 = 𝑦𝑥 = 𝑧))
109bibi2d 232 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
1110biimpd 144 . . . . . . 7 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
1211alimdv 1903 . . . . . 6 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
1312com12 30 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥(𝜑𝑥 = 𝑧)))
147, 13impbid 129 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1514alrimiv 1898 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
16 uniabio 5247 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1715, 16syl 14 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
181, 17eqtrid 2251 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773   cuni 3852  cio 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-sn 3640  df-pr 3641  df-uni 3853  df-iota 5237
This theorem is referenced by:  iotauni  5249  iota1  5251  euiotaex  5253  iota4  5256  iota5  5258
  Copyright terms: Public domain W3C validator