| Step | Hyp | Ref
| Expression |
| 1 | | dfiota2 5220 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} |
| 2 | | vex 2766 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 3 | | sbeqalb 3046 |
. . . . . . . 8
⊢ (𝑦 ∈ V → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → 𝑦 = 𝑧)) |
| 4 | | equcomi 1718 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → 𝑧 = 𝑦) |
| 5 | 3, 4 | syl6 33 |
. . . . . . 7
⊢ (𝑦 ∈ V → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → 𝑧 = 𝑦)) |
| 6 | 2, 5 | ax-mp 5 |
. . . . . 6
⊢
((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → 𝑧 = 𝑦) |
| 7 | 6 | ex 115 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = 𝑦)) |
| 8 | | equequ2 1727 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 9 | 8 | equcoms 1722 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 10 | 9 | bibi2d 232 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
| 11 | 10 | biimpd 144 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 ↔ 𝑥 = 𝑧))) |
| 12 | 11 | alimdv 1893 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 13 | 12 | com12 30 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 14 | 7, 13 | impbid 129 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦)) |
| 15 | 14 | alrimiv 1888 |
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦)) |
| 16 | | uniabio 5229 |
. . 3
⊢
(∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = 𝑦) |
| 17 | 15, 16 | syl 14 |
. 2
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = 𝑦) |
| 18 | 1, 17 | eqtrid 2241 |
1
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |