ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaval GIF version

Theorem iotaval 5171
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5161 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 vex 2733 . . . . . . 7 𝑦 ∈ V
3 sbeqalb 3011 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
4 equcomi 1697 . . . . . . . 8 (𝑦 = 𝑧𝑧 = 𝑦)
53, 4syl6 33 . . . . . . 7 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦))
62, 5ax-mp 5 . . . . . 6 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦)
76ex 114 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = 𝑦))
8 equequ2 1706 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
98equcoms 1701 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 = 𝑦𝑥 = 𝑧))
109bibi2d 231 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
1110biimpd 143 . . . . . . 7 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
1211alimdv 1872 . . . . . 6 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
1312com12 30 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥(𝜑𝑥 = 𝑧)))
147, 13impbid 128 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1514alrimiv 1867 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
16 uniabio 5170 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1715, 16syl 14 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
181, 17eqtrid 2215 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730   cuni 3796  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  iotauni  5172  iota1  5174  euiotaex  5176  iota4  5178  iota5  5180
  Copyright terms: Public domain W3C validator