ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4 GIF version

Theorem phplem4 6525
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6418 . 2 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
2 f1of1 5217 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
32adantl 271 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
4 phplem2.2 . . . . . . . . . 10 𝐵 ∈ V
54sucex 4291 . . . . . . . . 9 suc 𝐵 ∈ V
6 sssucid 4218 . . . . . . . . . 10 𝐴 ⊆ suc 𝐴
7 phplem2.1 . . . . . . . . . 10 𝐴 ∈ V
8 f1imaen2g 6464 . . . . . . . . . 10 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ V)) → (𝑓𝐴) ≈ 𝐴)
96, 7, 8mpanr12 430 . . . . . . . . 9 ((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) → (𝑓𝐴) ≈ 𝐴)
103, 5, 9sylancl 404 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1110ensymd 6454 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
12 nnord 4401 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
13 orddif 4338 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1412, 13syl 14 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1514imaeq2d 4743 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
16 f1ofn 5219 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
177sucid 4220 . . . . . . . . . . 11 𝐴 ∈ suc 𝐴
18 fnsnfv 5328 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
1916, 17, 18sylancl 404 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2019difeq2d 3107 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
21 imadmrn 4753 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
2221eqcomi 2089 . . . . . . . . . . 11 ran 𝑓 = (𝑓 “ dom 𝑓)
23 f1ofo 5225 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
24 forn 5201 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
2523, 24syl 14 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
26 f1odm 5222 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
2726imaeq2d 4743 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
2822, 25, 273eqtr3a 2141 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
2928difeq1d 3106 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
30 dff1o3 5224 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3130simprbi 269 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
32 imadif 5061 . . . . . . . . . 10 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3331, 32syl 14 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3420, 29, 333eqtr4rd 2128 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3515, 34sylan9eq 2137 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3611, 35breqtrd 3846 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
37 fnfvelrn 5396 . . . . . . . . . 10 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
3816, 17, 37sylancl 404 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ ran 𝑓)
3924eleq2d 2154 . . . . . . . . . 10 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4023, 39syl 14 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4138, 40mpbid 145 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ suc 𝐵)
42 vex 2618 . . . . . . . . . 10 𝑓 ∈ V
4342, 7fvex 5290 . . . . . . . . 9 (𝑓𝐴) ∈ V
444, 43phplem3 6524 . . . . . . . 8 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
4541, 44sylan2 280 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
4645ensymd 6454 . . . . . 6 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
47 entr 6455 . . . . . 6 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
4836, 46, 47syl2an 283 . . . . 5 (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
4948anandirs 558 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
5049ex 113 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
5150exlimdv 1744 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
521, 51syl5bi 150 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wex 1424  wcel 1436  Vcvv 2615  cdif 2985  wss 2988  {csn 3431   class class class wbr 3822  Ord word 4165  suc csuc 4168  ωcom 4380  ccnv 4412  dom cdm 4413  ran crn 4414  cima 4416  Fun wfun 4977   Fn wfn 4978  1-1wf1 4980  ontowfo 4981  1-1-ontowf1o 4982  cfv 4983  cen 6409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-er 6246  df-en 6412
This theorem is referenced by:  nneneq  6527  php5  6528
  Copyright terms: Public domain W3C validator