| Step | Hyp | Ref
 | Expression | 
| 1 |   | bren 6806 | 
. 2
⊢ (suc
𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) | 
| 2 |   | f1of1 5503 | 
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–1-1→suc 𝐵) | 
| 3 | 2 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓:suc 𝐴–1-1→suc 𝐵) | 
| 4 |   | phplem2.2 | 
. . . . . . . . . 10
⊢ 𝐵 ∈ V | 
| 5 | 4 | sucex 4535 | 
. . . . . . . . 9
⊢ suc 𝐵 ∈ V | 
| 6 |   | sssucid 4450 | 
. . . . . . . . . 10
⊢ 𝐴 ⊆ suc 𝐴 | 
| 7 |   | phplem2.1 | 
. . . . . . . . . 10
⊢ 𝐴 ∈ V | 
| 8 |   | f1imaen2g 6852 | 
. . . . . . . . . 10
⊢ (((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) ∧ (𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ V)) → (𝑓 “ 𝐴) ≈ 𝐴) | 
| 9 | 6, 7, 8 | mpanr12 439 | 
. . . . . . . . 9
⊢ ((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) → (𝑓 “ 𝐴) ≈ 𝐴) | 
| 10 | 3, 5, 9 | sylancl 413 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) ≈ 𝐴) | 
| 11 | 10 | ensymd 6842 | 
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (𝑓 “ 𝐴)) | 
| 12 |   | nnord 4648 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → Ord 𝐴) | 
| 13 |   | orddif 4583 | 
. . . . . . . . . 10
⊢ (Ord
𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) | 
| 15 | 14 | imaeq2d 5009 | 
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) | 
| 16 |   | f1ofn 5505 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓 Fn suc 𝐴) | 
| 17 | 7 | sucid 4452 | 
. . . . . . . . . . 11
⊢ 𝐴 ∈ suc 𝐴 | 
| 18 |   | fnsnfv 5620 | 
. . . . . . . . . . 11
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) | 
| 19 | 16, 17, 18 | sylancl 413 | 
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) | 
| 20 | 19 | difeq2d 3281 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) | 
| 21 |   | imadmrn 5019 | 
. . . . . . . . . . . 12
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 | 
| 22 | 21 | eqcomi 2200 | 
. . . . . . . . . . 11
⊢ ran 𝑓 = (𝑓 “ dom 𝑓) | 
| 23 |   | f1ofo 5511 | 
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–onto→suc 𝐵) | 
| 24 |   | forn 5483 | 
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ran 𝑓 = suc 𝐵) | 
| 25 | 23, 24 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ran 𝑓 = suc 𝐵) | 
| 26 |   | f1odm 5508 | 
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → dom 𝑓 = suc 𝐴) | 
| 27 | 26 | imaeq2d 5009 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴)) | 
| 28 | 22, 25, 27 | 3eqtr3a 2253 | 
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴)) | 
| 29 | 28 | difeq1d 3280 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) | 
| 30 |   | dff1o3 5510 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 ↔ (𝑓:suc 𝐴–onto→suc 𝐵 ∧ Fun ◡𝑓)) | 
| 31 | 30 | simprbi 275 | 
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → Fun ◡𝑓) | 
| 32 |   | imadif 5338 | 
. . . . . . . . . 10
⊢ (Fun
◡𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) | 
| 33 | 31, 32 | syl 14 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) | 
| 34 | 20, 29, 33 | 3eqtr4rd 2240 | 
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) | 
| 35 | 15, 34 | sylan9eq 2249 | 
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) | 
| 36 | 11, 35 | breqtrd 4059 | 
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) | 
| 37 |   | fnfvelrn 5694 | 
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → (𝑓‘𝐴) ∈ ran 𝑓) | 
| 38 | 16, 17, 37 | sylancl 413 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓‘𝐴) ∈ ran 𝑓) | 
| 39 | 24 | eleq2d 2266 | 
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) | 
| 40 | 23, 39 | syl 14 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) | 
| 41 | 38, 40 | mpbid 147 | 
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓‘𝐴) ∈ suc 𝐵) | 
| 42 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑓 ∈ V | 
| 43 | 42, 7 | fvex 5578 | 
. . . . . . . . 9
⊢ (𝑓‘𝐴) ∈ V | 
| 44 | 4, 43 | phplem3 6915 | 
. . . . . . . 8
⊢ ((𝐵 ∈ ω ∧ (𝑓‘𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) | 
| 45 | 41, 44 | sylan2 286 | 
. . . . . . 7
⊢ ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) | 
| 46 | 45 | ensymd 6842 | 
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) | 
| 47 |   | entr 6843 | 
. . . . . 6
⊢ ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) → 𝐴 ≈ 𝐵) | 
| 48 | 36, 46, 47 | syl2an 289 | 
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵)) → 𝐴 ≈ 𝐵) | 
| 49 | 48 | anandirs 593 | 
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ 𝐵) | 
| 50 | 49 | ex 115 | 
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝐴 ≈ 𝐵)) | 
| 51 | 50 | exlimdv 1833 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝐴 ≈ 𝐵)) | 
| 52 | 1, 51 | biimtrid 152 | 
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |