Step | Hyp | Ref
| Expression |
1 | | bren 6713 |
. 2
⊢ (suc
𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
2 | | f1of1 5431 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–1-1→suc 𝐵) |
3 | 2 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓:suc 𝐴–1-1→suc 𝐵) |
4 | | phplem2.2 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
5 | 4 | sucex 4476 |
. . . . . . . . 9
⊢ suc 𝐵 ∈ V |
6 | | sssucid 4393 |
. . . . . . . . . 10
⊢ 𝐴 ⊆ suc 𝐴 |
7 | | phplem2.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
8 | | f1imaen2g 6759 |
. . . . . . . . . 10
⊢ (((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) ∧ (𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ V)) → (𝑓 “ 𝐴) ≈ 𝐴) |
9 | 6, 7, 8 | mpanr12 436 |
. . . . . . . . 9
⊢ ((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ V) → (𝑓 “ 𝐴) ≈ 𝐴) |
10 | 3, 5, 9 | sylancl 410 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) ≈ 𝐴) |
11 | 10 | ensymd 6749 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (𝑓 “ 𝐴)) |
12 | | nnord 4589 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → Ord 𝐴) |
13 | | orddif 4524 |
. . . . . . . . . 10
⊢ (Ord
𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
14 | 12, 13 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
15 | 14 | imaeq2d 4946 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
16 | | f1ofn 5433 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓 Fn suc 𝐴) |
17 | 7 | sucid 4395 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ suc 𝐴 |
18 | | fnsnfv 5545 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
19 | 16, 17, 18 | sylancl 410 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
20 | 19 | difeq2d 3240 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
21 | | imadmrn 4956 |
. . . . . . . . . . . 12
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
22 | 21 | eqcomi 2169 |
. . . . . . . . . . 11
⊢ ran 𝑓 = (𝑓 “ dom 𝑓) |
23 | | f1ofo 5439 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–onto→suc 𝐵) |
24 | | forn 5413 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ran 𝑓 = suc 𝐵) |
25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ran 𝑓 = suc 𝐵) |
26 | | f1odm 5436 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → dom 𝑓 = suc 𝐴) |
27 | 26 | imaeq2d 4946 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴)) |
28 | 22, 25, 27 | 3eqtr3a 2223 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴)) |
29 | 28 | difeq1d 3239 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) |
30 | | dff1o3 5438 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 ↔ (𝑓:suc 𝐴–onto→suc 𝐵 ∧ Fun ◡𝑓)) |
31 | 30 | simprbi 273 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → Fun ◡𝑓) |
32 | | imadif 5268 |
. . . . . . . . . 10
⊢ (Fun
◡𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
33 | 31, 32 | syl 14 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
34 | 20, 29, 33 | 3eqtr4rd 2209 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
35 | 15, 34 | sylan9eq 2219 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
36 | 11, 35 | breqtrd 4008 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
37 | | fnfvelrn 5617 |
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → (𝑓‘𝐴) ∈ ran 𝑓) |
38 | 16, 17, 37 | sylancl 410 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓‘𝐴) ∈ ran 𝑓) |
39 | 24 | eleq2d 2236 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
40 | 23, 39 | syl 14 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
41 | 38, 40 | mpbid 146 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓‘𝐴) ∈ suc 𝐵) |
42 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
43 | 42, 7 | fvex 5506 |
. . . . . . . . 9
⊢ (𝑓‘𝐴) ∈ V |
44 | 4, 43 | phplem3 6820 |
. . . . . . . 8
⊢ ((𝐵 ∈ ω ∧ (𝑓‘𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
45 | 41, 44 | sylan2 284 |
. . . . . . 7
⊢ ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
46 | 45 | ensymd 6749 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) |
47 | | entr 6750 |
. . . . . 6
⊢ ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) → 𝐴 ≈ 𝐵) |
48 | 36, 46, 47 | syl2an 287 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵)) → 𝐴 ≈ 𝐵) |
49 | 48 | anandirs 583 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ 𝐵) |
50 | 49 | ex 114 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝐴 ≈ 𝐵)) |
51 | 50 | exlimdv 1807 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝐴 ≈ 𝐵)) |
52 | 1, 51 | syl5bi 151 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |