ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd GIF version

Theorem muladd 8170
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
muladd (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem muladd
StepHypRef Expression
1 addcl 7769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 adddi 7776 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
323expb 1183 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
41, 3sylan 281 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
5 adddir 7781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
653expa 1182 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
76adantrr 471 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
8 adddir 7781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
983expa 1182 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
109adantrl 470 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
117, 10oveq12d 5800 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
12 mulcl 7771 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
1312ad2ant2r 501 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
14 mulcl 7771 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
1514ad2ant2lr 502 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
16 mulcl 7771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 7771 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
18 addcl 7769 . . . . . . 7 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
1916, 17, 18syl2an 287 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2019anandirs 583 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2120adantrl 470 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2213, 15, 21add32d 7954 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)))
23 mulcom 7773 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2423ad2ant2l 500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2524oveq2d 5798 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)))
2616ad2ant2rl 503 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2717ad2ant2l 500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
2813, 26, 27addassd 7812 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
29 mulcl 7771 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3029ancoms 266 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3130ad2ant2l 500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷 · 𝐵) ∈ ℂ)
3213, 26, 31add32d 7954 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
3325, 28, 323eqtr3d 2181 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
34 mulcom 7773 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3534ad2ant2lr 502 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3633, 35oveq12d 5800 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)) = ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)))
37 addcl 7769 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3812, 30, 37syl2an 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3938an4s 578 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
40 mulcl 7771 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4140ancoms 266 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4241ad2ant2lr 502 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 · 𝐵) ∈ ℂ)
4339, 26, 42addassd 7812 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
4422, 36, 433eqtrd 2177 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
454, 11, 443eqtrd 2177 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  (class class class)co 5782  cc 7642   + caddc 7647   · cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-addcl 7740  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-distr 7748
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-iota 5096  df-fv 5139  df-ov 5785
This theorem is referenced by:  mulsub  8187  muladdi  8195  muladdd  8202  sqabsadd  10859  demoivreALT  11516
  Copyright terms: Public domain W3C validator