| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6805 xposdif 9976 qbtwnz 10360 seq3f1o 10628 exp3vallem 10651 fihashf1rn 10899 xrmin2inf 11452 sumrbdclem 11561 summodclem3 11564 zsumdc 11568 fsum3cvg2 11578 mertenslem2 11720 mertensabs 11721 prodrbdclem 11755 prodmodclem2a 11760 zproddc 11763 eftcl 11838 divalgmod 12111 bitsmod 12140 gcdsupex 12151 gcdsupcl 12152 cncongr2 12299 isprm3 12313 eulerthlemrprm 12424 eulerthlema 12425 pcmptdvds 12541 prdsex 12973 elplyd 15063 ply1term 15065 lgsval2lem 15337 nninfself 15746 |
| Copyright terms: Public domain | W3C validator |