| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) | 
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | 
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) | 
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mapsnf1o 6796 xposdif 9957 qbtwnz 10341 seq3f1o 10609 exp3vallem 10632 fihashf1rn 10880 xrmin2inf 11433 sumrbdclem 11542 summodclem3 11545 zsumdc 11549 fsum3cvg2 11559 mertenslem2 11701 mertensabs 11702 prodrbdclem 11736 prodmodclem2a 11741 zproddc 11744 eftcl 11819 divalgmod 12092 gcdsupex 12124 gcdsupcl 12125 cncongr2 12272 isprm3 12286 eulerthlemrprm 12397 eulerthlema 12398 pcmptdvds 12514 prdsex 12940 elplyd 14977 ply1term 14979 lgsval2lem 15251 nninfself 15657 | 
| Copyright terms: Public domain | W3C validator |