Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version |
Description: syl2an 287 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 573 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mapsnf1o 6703 xposdif 9818 qbtwnz 10187 seq3f1o 10439 exp3vallem 10456 fihashf1rn 10702 xrmin2inf 11209 sumrbdclem 11318 summodclem3 11321 zsumdc 11325 fsum3cvg2 11335 mertenslem2 11477 mertensabs 11478 prodrbdclem 11512 prodmodclem2a 11517 zproddc 11520 eftcl 11595 divalgmod 11864 gcdsupex 11890 gcdsupcl 11891 cncongr2 12036 isprm3 12050 eulerthlemrprm 12161 eulerthlema 12162 pcmptdvds 12275 lgsval2lem 13551 nninfself 13893 |
Copyright terms: Public domain | W3C validator |