| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6831 xposdif 10011 qbtwnz 10401 seq3f1o 10669 exp3vallem 10692 fihashf1rn 10940 fun2dmnop0 10999 xrmin2inf 11623 sumrbdclem 11732 summodclem3 11735 zsumdc 11739 fsum3cvg2 11749 mertenslem2 11891 mertensabs 11892 prodrbdclem 11926 prodmodclem2a 11931 zproddc 11934 eftcl 12009 divalgmod 12282 bitsmod 12311 gcdsupex 12322 gcdsupcl 12323 cncongr2 12470 isprm3 12484 eulerthlemrprm 12595 eulerthlema 12596 pcmptdvds 12712 prdsex 13145 elplyd 15257 ply1term 15259 lgsval2lem 15531 nninfself 16024 |
| Copyright terms: Public domain | W3C validator |