| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6854 xposdif 10046 qbtwnz 10438 seq3f1o 10706 exp3vallem 10729 fihashf1rn 10977 fun2dmnop0 11036 xrmin2inf 11745 sumrbdclem 11854 summodclem3 11857 zsumdc 11861 fsum3cvg2 11871 mertenslem2 12013 mertensabs 12014 prodrbdclem 12048 prodmodclem2a 12053 zproddc 12056 eftcl 12131 divalgmod 12404 bitsmod 12433 gcdsupex 12444 gcdsupcl 12445 cncongr2 12592 isprm3 12606 eulerthlemrprm 12717 eulerthlema 12718 pcmptdvds 12834 prdsex 13268 elplyd 15380 ply1term 15382 lgsval2lem 15654 nninfself 16290 |
| Copyright terms: Public domain | W3C validator |