Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version |
Description: syl2an 287 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 578 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mapsnf1o 6715 xposdif 9839 qbtwnz 10208 seq3f1o 10460 exp3vallem 10477 fihashf1rn 10723 xrmin2inf 11231 sumrbdclem 11340 summodclem3 11343 zsumdc 11347 fsum3cvg2 11357 mertenslem2 11499 mertensabs 11500 prodrbdclem 11534 prodmodclem2a 11539 zproddc 11542 eftcl 11617 divalgmod 11886 gcdsupex 11912 gcdsupcl 11913 cncongr2 12058 isprm3 12072 eulerthlemrprm 12183 eulerthlema 12184 pcmptdvds 12297 lgsval2lem 13705 nninfself 14046 |
Copyright terms: Public domain | W3C validator |