| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6892 xposdif 10086 qbtwnz 10479 seq3f1o 10747 exp3vallem 10770 fihashf1rn 11018 fun2dmnop0 11077 xrmin2inf 11787 sumrbdclem 11896 summodclem3 11899 zsumdc 11903 fsum3cvg2 11913 mertenslem2 12055 mertensabs 12056 prodrbdclem 12090 prodmodclem2a 12095 zproddc 12098 eftcl 12173 divalgmod 12446 bitsmod 12475 gcdsupex 12486 gcdsupcl 12487 cncongr2 12634 isprm3 12648 eulerthlemrprm 12759 eulerthlema 12760 pcmptdvds 12876 prdsex 13310 elplyd 15423 ply1term 15425 lgsval2lem 15697 nninfself 16409 |
| Copyright terms: Public domain | W3C validator |