Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version |
Description: syl2an 287 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 578 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mapsnf1o 6711 xposdif 9826 qbtwnz 10195 seq3f1o 10447 exp3vallem 10464 fihashf1rn 10710 xrmin2inf 11218 sumrbdclem 11327 summodclem3 11330 zsumdc 11334 fsum3cvg2 11344 mertenslem2 11486 mertensabs 11487 prodrbdclem 11521 prodmodclem2a 11526 zproddc 11529 eftcl 11604 divalgmod 11873 gcdsupex 11899 gcdsupcl 11900 cncongr2 12045 isprm3 12059 eulerthlemrprm 12170 eulerthlema 12171 pcmptdvds 12284 lgsval2lem 13664 nninfself 14006 |
Copyright terms: Public domain | W3C validator |