| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
| syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
| 3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| 5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6797 xposdif 9959 qbtwnz 10343 seq3f1o 10611 exp3vallem 10634 fihashf1rn 10882 xrmin2inf 11435 sumrbdclem 11544 summodclem3 11547 zsumdc 11551 fsum3cvg2 11561 mertenslem2 11703 mertensabs 11704 prodrbdclem 11738 prodmodclem2a 11743 zproddc 11746 eftcl 11821 divalgmod 12094 bitsmod 12123 gcdsupex 12134 gcdsupcl 12135 cncongr2 12282 isprm3 12296 eulerthlemrprm 12407 eulerthlema 12408 pcmptdvds 12524 prdsex 12950 elplyd 14987 ply1term 14989 lgsval2lem 15261 nninfself 15667 |
| Copyright terms: Public domain | W3C validator |