![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2an2 | GIF version |
Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 583 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mapsnf1o 6793 xposdif 9951 qbtwnz 10323 seq3f1o 10591 exp3vallem 10614 fihashf1rn 10862 xrmin2inf 11414 sumrbdclem 11523 summodclem3 11526 zsumdc 11530 fsum3cvg2 11540 mertenslem2 11682 mertensabs 11683 prodrbdclem 11717 prodmodclem2a 11722 zproddc 11725 eftcl 11800 divalgmod 12071 gcdsupex 12097 gcdsupcl 12098 cncongr2 12245 isprm3 12259 eulerthlemrprm 12370 eulerthlema 12371 pcmptdvds 12486 prdsex 12883 elplyd 14920 ply1term 14922 lgsval2lem 15167 nninfself 15573 |
Copyright terms: Public domain | W3C validator |