ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzaddel GIF version

Theorem fzaddel 10216
Description: Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzaddel (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))

Proof of Theorem fzaddel
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ)
2 zaddcl 9447 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
31, 22thd 175 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ↔ (𝐽 + 𝐾) ∈ ℤ))
43adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ ℤ ↔ (𝐽 + 𝐾) ∈ ℤ))
5 zre 9411 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 9411 . . . . . 6 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
7 zre 9411 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
8 leadd1 8538 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐽 ↔ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾)))
95, 6, 7, 8syl3an 1292 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐽 ↔ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾)))
1093expb 1207 . . . 4 ((𝑀 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀𝐽 ↔ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾)))
1110adantlr 477 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀𝐽 ↔ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾)))
12 zre 9411 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 leadd1 8538 . . . . . . 7 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐽𝑁 ↔ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾)))
146, 12, 7, 13syl3an 1292 . . . . . 6 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝑁 ↔ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾)))
15143com12 1210 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝑁 ↔ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾)))
16153expb 1207 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑁 ↔ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾)))
1716adantll 476 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑁 ↔ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾)))
184, 11, 173anbi123d 1325 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ↔ ((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾))))
19 elfz1 10170 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2019adantr 276 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
21 zaddcl 9447 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
22 zaddcl 9447 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
23 elfz1 10170 . . . . 5 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾))))
2421, 22, 23syl2an 289 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾))))
2524anandirs 593 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾))))
2625adantrl 478 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝐾))))
2718, 20, 263bitr4d 220 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959   + caddc 7963  cle 8143  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-fz 10166
This theorem is referenced by:  fzsubel  10217  ser3mono  10669  bcp1nk  10944  mptfzshft  11868  binomlem  11909
  Copyright terms: Public domain W3C validator