ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvreseq GIF version

Theorem fvreseq 5611
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5321 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fnssres 5321 . . . 4 ((𝐺 Fn 𝐴𝐵𝐴) → (𝐺𝐵) Fn 𝐵)
31, 2anim12i 338 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ (𝐺 Fn 𝐴𝐵𝐴)) → ((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵))
43anandirs 593 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵))
5 eqfnfv 5605 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥)))
6 fvres 5531 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
7 fvres 5531 . . . . 5 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
86, 7eqeq12d 2190 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
98ralbiia 2489 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
105, 9bitrdi 196 . 2 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
114, 10syl 14 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  wss 3127  cres 4622   Fn wfn 5203  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216
This theorem is referenced by:  tfri3  6358
  Copyright terms: Public domain W3C validator