ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvreseq GIF version

Theorem fvreseq 5589
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5301 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fnssres 5301 . . . 4 ((𝐺 Fn 𝐴𝐵𝐴) → (𝐺𝐵) Fn 𝐵)
31, 2anim12i 336 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ (𝐺 Fn 𝐴𝐵𝐴)) → ((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵))
43anandirs 583 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵))
5 eqfnfv 5583 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥)))
6 fvres 5510 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
7 fvres 5510 . . . . 5 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
86, 7eqeq12d 2180 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
98ralbiia 2480 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
105, 9bitrdi 195 . 2 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
114, 10syl 14 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wss 3116  cres 4606   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfri3  6335
  Copyright terms: Public domain W3C validator