| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvreseq | GIF version | ||
| Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvreseq | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssres 5371 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 2 | fnssres 5371 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐺 ↾ 𝐵) Fn 𝐵) | |
| 3 | 1, 2 | anim12i 338 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝐺 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴)) → ((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵)) |
| 4 | 3 | anandirs 593 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵)) |
| 5 | eqfnfv 5659 | . . 3 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥))) | |
| 6 | fvres 5582 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
| 7 | fvres 5582 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 6, 7 | eqeq12d 2211 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 9 | 8 | ralbiia 2511 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 10 | 5, 9 | bitrdi 196 | . 2 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 11 | 4, 10 | syl 14 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ↾ cres 4665 Fn wfn 5253 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: tfri3 6425 |
| Copyright terms: Public domain | W3C validator |