Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexd | GIF version |
Description: A subclass of a set is a set. Deduction form of ssexg 4128. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | ssexg 4128 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: fex2 5366 riotaexg 5813 opabbrex 5897 funexw 6091 f1imaen2g 6771 fiss 6954 genipv 7471 suplocexprlemlub 7686 hashfacen 10771 ovshftex 10783 strslssd 12462 restid2 12588 2basgeng 12876 cnrest2 13030 cnptopresti 13032 cnptoprest 13033 cnptoprest2 13034 cnmpt2res 13091 psmetres2 13127 xmetres2 13173 limccnp2lem 13439 limccnp2cntop 13440 dvfvalap 13444 dvmulxxbr 13460 dvaddxx 13461 dvmulxx 13462 dviaddf 13463 dvimulf 13464 dvcoapbr 13465 dvmptaddx 13475 dvmptmulx 13476 |
Copyright terms: Public domain | W3C validator |