Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexd | GIF version |
Description: A subclass of a set is a set. Deduction form of ssexg 4137. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | ssexg 4137 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 Vcvv 2735 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 |
This theorem is referenced by: fex2 5376 riotaexg 5825 opabbrex 5909 funexw 6103 f1imaen2g 6783 fiss 6966 genipv 7483 suplocexprlemlub 7698 hashfacen 10784 ovshftex 10796 strslssd 12475 ressbas2d 12494 ressval3d 12497 ressabsg 12501 restid2 12628 2basgeng 13162 cnrest2 13316 cnptopresti 13318 cnptoprest 13319 cnptoprest2 13320 cnmpt2res 13377 psmetres2 13413 xmetres2 13459 limccnp2lem 13725 limccnp2cntop 13726 dvfvalap 13730 dvmulxxbr 13746 dvaddxx 13747 dvmulxx 13748 dviaddf 13749 dvimulf 13750 dvcoapbr 13751 dvmptaddx 13761 dvmptmulx 13762 |
Copyright terms: Public domain | W3C validator |