| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexd | GIF version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4184. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | ssexg 4184 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: iotaexab 5251 fex2 5446 riotaexg 5905 opabbrex 5991 funexw 6199 f1imaen2g 6887 pw2f1odclem 6933 fiss 7081 genipv 7624 suplocexprlemlub 7839 hashfacen 10983 ovshftex 11163 strslssd 12912 ressbas2d 12933 ressval3d 12937 ressabsg 12941 restid2 13113 ptex 13129 prdsval 13138 prdsbaslemss 13139 divsfval 13193 divsfvalg 13194 igsumvalx 13254 issubmnd 13307 ress0g 13308 issubg2m 13558 releqgg 13589 eqgex 13590 eqgfval 13591 isghm 13612 ringidss 13824 reldvdsrsrg 13887 dvdsrvald 13888 dvdsrex 13893 unitgrp 13911 unitabl 13912 unitlinv 13921 unitrinv 13922 dvrfvald 13928 rdivmuldivd 13939 invrpropdg 13944 rhmunitinv 13973 subrgugrp 14035 aprval 14077 aprap 14081 sralemg 14233 srascag 14237 sravscag 14238 sraipg 14239 sraex 14241 2basgeng 14587 cnrest2 14741 cnptopresti 14743 cnptoprest 14744 cnptoprest2 14745 cnmpt2res 14802 psmetres2 14838 xmetres2 14884 limccnp2lem 15181 limccnp2cntop 15182 dvfvalap 15186 dvmulxxbr 15207 dvaddxx 15208 dvmulxx 15209 dviaddf 15210 dvimulf 15211 dvcoapbr 15212 dvmptaddx 15224 dvmptmulx 15225 plycj 15266 |
| Copyright terms: Public domain | W3C validator |