| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexd | GIF version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4199. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | ssexg 4199 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: iotaexab 5269 fex2 5464 riotaexg 5926 opabbrex 6012 funexw 6220 f1imaen2g 6908 pw2f1odclem 6956 fiss 7105 genipv 7657 suplocexprlemlub 7872 hashfacen 11018 ovshftex 11245 strslssd 12994 ressbas2d 13015 ressval3d 13019 ressabsg 13023 restid2 13195 ptex 13211 prdsval 13220 prdsbaslemss 13221 divsfval 13275 divsfvalg 13276 igsumvalx 13336 issubmnd 13389 ress0g 13390 issubg2m 13640 releqgg 13671 eqgex 13672 eqgfval 13673 isghm 13694 ringidss 13906 reldvdsrsrg 13969 dvdsrvald 13970 dvdsrex 13975 unitgrp 13993 unitabl 13994 unitlinv 14003 unitrinv 14004 dvrfvald 14010 rdivmuldivd 14021 invrpropdg 14026 rhmunitinv 14055 subrgugrp 14117 aprval 14159 aprap 14163 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 2basgeng 14669 cnrest2 14823 cnptopresti 14825 cnptoprest 14826 cnptoprest2 14827 cnmpt2res 14884 psmetres2 14920 xmetres2 14966 limccnp2lem 15263 limccnp2cntop 15264 dvfvalap 15268 dvmulxxbr 15289 dvaddxx 15290 dvmulxx 15291 dviaddf 15292 dvimulf 15293 dvcoapbr 15294 dvmptaddx 15306 dvmptmulx 15307 plycj 15348 |
| Copyright terms: Public domain | W3C validator |