| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexd | GIF version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4173. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | ssexg 4173 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iotaexab 5238 fex2 5429 riotaexg 5884 opabbrex 5970 funexw 6178 f1imaen2g 6861 pw2f1odclem 6904 fiss 7052 genipv 7595 suplocexprlemlub 7810 hashfacen 10947 ovshftex 11003 strslssd 12752 ressbas2d 12773 ressval3d 12777 ressabsg 12781 restid2 12952 ptex 12968 prdsval 12977 prdsbaslemss 12978 divsfval 13032 divsfvalg 13033 igsumvalx 13093 issubmnd 13146 ress0g 13147 issubg2m 13397 releqgg 13428 eqgex 13429 eqgfval 13430 isghm 13451 ringidss 13663 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrex 13732 unitgrp 13750 unitabl 13751 unitlinv 13760 unitrinv 13761 dvrfvald 13767 rdivmuldivd 13778 invrpropdg 13783 rhmunitinv 13812 subrgugrp 13874 aprval 13916 aprap 13920 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 2basgeng 14426 cnrest2 14580 cnptopresti 14582 cnptoprest 14583 cnptoprest2 14584 cnmpt2res 14641 psmetres2 14677 xmetres2 14723 limccnp2lem 15020 limccnp2cntop 15021 dvfvalap 15025 dvmulxxbr 15046 dvaddxx 15047 dvmulxx 15048 dviaddf 15049 dvimulf 15050 dvcoapbr 15051 dvmptaddx 15063 dvmptmulx 15064 plycj 15105 |
| Copyright terms: Public domain | W3C validator |