| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexd | GIF version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4223. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | ssexg 4223 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iotaexab 5297 fex2 5492 riotaexg 5958 opabbrex 6048 funexw 6257 f1imaen2g 6945 pw2f1odclem 6995 fiss 7144 genipv 7696 suplocexprlemlub 7911 hashfacen 11058 ovshftex 11330 strslssd 13079 ressbas2d 13101 ressval3d 13105 ressabsg 13109 restid2 13281 ptex 13297 prdsval 13306 prdsbaslemss 13307 divsfval 13361 divsfvalg 13362 igsumvalx 13422 issubmnd 13475 ress0g 13476 issubg2m 13726 releqgg 13757 eqgex 13758 eqgfval 13759 isghm 13780 ringidss 13992 dvdsrvald 14057 dvdsrex 14062 unitgrp 14080 unitabl 14081 unitlinv 14090 unitrinv 14091 dvrfvald 14097 rdivmuldivd 14108 invrpropdg 14113 rhmunitinv 14142 subrgugrp 14204 aprval 14246 aprap 14250 sralemg 14402 srascag 14406 sravscag 14407 sraipg 14408 sraex 14410 2basgeng 14756 cnrest2 14910 cnptopresti 14912 cnptoprest 14913 cnptoprest2 14914 cnmpt2res 14971 psmetres2 15007 xmetres2 15053 limccnp2lem 15350 limccnp2cntop 15351 dvfvalap 15355 dvmulxxbr 15376 dvaddxx 15377 dvmulxx 15378 dviaddf 15379 dvimulf 15380 dvcoapbr 15381 dvmptaddx 15393 dvmptmulx 15394 plycj 15435 wksfval 16035 |
| Copyright terms: Public domain | W3C validator |