Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexi | GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 4124 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: zfausab 4129 pp0ex 4173 ord3ex 4174 epse 4325 opabex 5718 mptexw 6090 oprabex 6105 mpoexw 6190 phplem2 6829 phpm 6841 snexxph 6925 sbthlem2 6933 niex 7267 enqex 7315 enq0ex 7394 npex 7428 ltnqex 7504 gtnqex 7505 recexprlemell 7577 recexprlemelu 7578 enrex 7692 axcnex 7814 peano5nnnn 7847 reex 7901 nnex 8877 zex 9214 qex 9584 ixxex 9849 iccen 9956 serclim0 11261 climle 11290 iserabs 11431 isumshft 11446 explecnv 11461 prodfclim1 11500 prmex 12060 exmidunben 12374 istopon 12770 dmtopon 12780 lmres 13007 climcncf 13330 reldvg 13407 |
Copyright terms: Public domain | W3C validator |