| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexi | GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 4182 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: zfausab 4187 pp0ex 4234 ord3ex 4235 epse 4390 opabex 5810 mptexw 6200 oprabex 6215 mpoexw 6301 phplem2 6952 phpm 6964 snexxph 7054 sbthlem2 7062 2omotaplemst 7372 niex 7427 enqex 7475 enq0ex 7554 npex 7588 ltnqex 7664 gtnqex 7665 recexprlemell 7737 recexprlemelu 7738 enrex 7852 axcnex 7974 peano5nnnn 8007 reex 8061 nnex 9044 zex 9383 qex 9755 ixxex 10023 iccen 10130 serclim0 11649 climle 11678 iserabs 11819 isumshft 11834 explecnv 11849 prodfclim1 11888 prmex 12468 exmidunben 12830 prdsex 13134 prdsval 13138 fngsum 13253 igsumvalx 13254 metuex 14350 cnfldstr 14353 cnfldle 14362 znval 14431 znle 14432 znbaslemnn 14434 istopon 14518 dmtopon 14528 lmres 14753 climcncf 15089 reldvg 15184 |
| Copyright terms: Public domain | W3C validator |