ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexi GIF version

Theorem ssexi 4222
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
ssexi.1 𝐵 ∈ V
ssexi.2 𝐴𝐵
Assertion
Ref Expression
ssexi 𝐴 ∈ V

Proof of Theorem ssexi
StepHypRef Expression
1 ssexi.2 . 2 𝐴𝐵
2 ssexi.1 . . 3 𝐵 ∈ V
32ssex 4221 . 2 (𝐴𝐵𝐴 ∈ V)
41, 3ax-mp 5 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  zfausab  4226  pp0ex  4273  ord3ex  4274  epse  4433  opabex  5863  mptexw  6258  oprabex  6273  mpoexw  6359  phplem2  7014  phpm  7027  snexxph  7117  sbthlem2  7125  2omotaplemst  7444  niex  7499  enqex  7547  enq0ex  7626  npex  7660  ltnqex  7736  gtnqex  7737  recexprlemell  7809  recexprlemelu  7810  enrex  7924  axcnex  8046  peano5nnnn  8079  reex  8133  nnex  9116  zex  9455  qex  9827  ixxex  10095  iccen  10202  serclim0  11816  climle  11845  iserabs  11986  isumshft  12001  explecnv  12016  prodfclim1  12055  prmex  12635  exmidunben  12997  prdsex  13302  prdsval  13306  fngsum  13421  igsumvalx  13422  metuex  14519  cnfldstr  14522  cnfldle  14531  znval  14600  znle  14601  znbaslemnn  14603  istopon  14687  dmtopon  14697  lmres  14922  climcncf  15258  reldvg  15353
  Copyright terms: Public domain W3C validator