| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexi | GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 4171 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: zfausab 4176 pp0ex 4223 ord3ex 4224 epse 4378 opabex 5789 mptexw 6179 oprabex 6194 mpoexw 6280 phplem2 6923 phpm 6935 snexxph 7025 sbthlem2 7033 2omotaplemst 7343 niex 7398 enqex 7446 enq0ex 7525 npex 7559 ltnqex 7635 gtnqex 7636 recexprlemell 7708 recexprlemelu 7709 enrex 7823 axcnex 7945 peano5nnnn 7978 reex 8032 nnex 9015 zex 9354 qex 9725 ixxex 9993 iccen 10100 serclim0 11489 climle 11518 iserabs 11659 isumshft 11674 explecnv 11689 prodfclim1 11728 prmex 12308 exmidunben 12670 prdsex 12973 prdsval 12977 fngsum 13092 igsumvalx 13093 metuex 14189 cnfldstr 14192 cnfldle 14201 znval 14270 znle 14271 znbaslemnn 14273 istopon 14357 dmtopon 14367 lmres 14592 climcncf 14928 reldvg 15023 |
| Copyright terms: Public domain | W3C validator |