![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexi | GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 4167 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 |
This theorem is referenced by: zfausab 4172 pp0ex 4219 ord3ex 4220 epse 4374 opabex 5783 mptexw 6167 oprabex 6182 mpoexw 6268 phplem2 6911 phpm 6923 snexxph 7011 sbthlem2 7019 2omotaplemst 7320 niex 7374 enqex 7422 enq0ex 7501 npex 7535 ltnqex 7611 gtnqex 7612 recexprlemell 7684 recexprlemelu 7685 enrex 7799 axcnex 7921 peano5nnnn 7954 reex 8008 nnex 8990 zex 9329 qex 9700 ixxex 9968 iccen 10075 serclim0 11451 climle 11480 iserabs 11621 isumshft 11636 explecnv 11651 prodfclim1 11690 prmex 12254 exmidunben 12586 prdsex 12883 fngsum 12974 igsumvalx 12975 metuex 14054 cnfldstr 14057 cnfldle 14066 znval 14135 znle 14136 znbaslemnn 14138 istopon 14192 dmtopon 14202 lmres 14427 climcncf 14763 reldvg 14858 |
Copyright terms: Public domain | W3C validator |