Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexi | GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 4119 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: zfausab 4124 pp0ex 4168 ord3ex 4169 epse 4320 opabex 5709 mptexw 6081 oprabex 6096 mpoexw 6181 phplem2 6819 phpm 6831 snexxph 6915 sbthlem2 6923 niex 7253 enqex 7301 enq0ex 7380 npex 7414 ltnqex 7490 gtnqex 7491 recexprlemell 7563 recexprlemelu 7564 enrex 7678 axcnex 7800 peano5nnnn 7833 reex 7887 nnex 8863 zex 9200 qex 9570 ixxex 9835 iccen 9942 serclim0 11246 climle 11275 iserabs 11416 isumshft 11431 explecnv 11446 prodfclim1 11485 prmex 12045 exmidunben 12359 istopon 12651 dmtopon 12661 lmres 12888 climcncf 13211 reldvg 13288 |
Copyright terms: Public domain | W3C validator |