ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccv GIF version

Theorem rspccv 2827
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspccv (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspccv
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2826 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32com12 30 1 (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  elinti  3833  ofrval  6060  supubti  6964  suplubti  6965  suplocsrlempr  7748  pitonn  7789  peano5uzti  9299  zindd  9309  1arith  12297  basis2  12686  tg2  12700  mopni  13122  metrest  13146  metcnpi  13155  metcnpi2  13156  decidi  13676  sumdc2  13680
  Copyright terms: Public domain W3C validator