![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | GIF version |
Description: Version of bj-bdfindis 11725 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 11725 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-bdfindisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-bdfindisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-bdfindisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-bdfindisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
2 | bj-bdfindis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-bdfindis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
4 | bj-bdfindis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
5 | bj-bdfindis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
6 | bj-bdfindis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | bj-bdfindis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 11725 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
9 | bj-bdfindisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
10 | nfcv 2228 | . . 3 ⊢ Ⅎ𝑥ω | |
11 | bj-bdfindisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
12 | bj-bdfindisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
13 | 9, 10, 11, 12 | bj-rspg 11570 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
14 | 8, 13 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 Ⅎwnf 1394 ∈ wcel 1438 Ⅎwnfc 2215 ∀wral 2359 ∅c0 3286 suc csuc 4190 ωcom 4403 BOUNDED wbd 11586 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-nul 3963 ax-pr 4034 ax-un 4258 ax-bd0 11587 ax-bdor 11590 ax-bdex 11593 ax-bdeq 11594 ax-bdel 11595 ax-bdsb 11596 ax-bdsep 11658 ax-infvn 11719 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-sn 3450 df-pr 3451 df-uni 3652 df-int 3687 df-suc 4196 df-iom 4404 df-bdc 11615 df-bj-ind 11705 |
This theorem is referenced by: bj-nntrans 11729 bj-nnelirr 11731 bj-omtrans 11734 |
Copyright terms: Public domain | W3C validator |