Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | GIF version |
Description: Version of bj-bdfindis 13982 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 13982 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-bdfindisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-bdfindisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-bdfindisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-bdfindisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
2 | bj-bdfindis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-bdfindis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
4 | bj-bdfindis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
5 | bj-bdfindis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
6 | bj-bdfindis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | bj-bdfindis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 13982 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
9 | bj-bdfindisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
10 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑥ω | |
11 | bj-bdfindisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
12 | bj-bdfindisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
13 | 9, 10, 11, 12 | bj-rspg 13822 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
14 | 8, 13 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 ∀wral 2448 ∅c0 3414 suc csuc 4350 ωcom 4574 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-nntrans 13986 bj-nnelirr 13988 bj-omtrans 13991 |
Copyright terms: Public domain | W3C validator |