Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindisg GIF version

Theorem bj-bdfindisg 16311
Description: Version of bj-bdfindis 16310 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 16310 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd BOUNDED 𝜑
bj-bdfindis.nf0 𝑥𝜓
bj-bdfindis.nf1 𝑥𝜒
bj-bdfindis.nfsuc 𝑥𝜃
bj-bdfindis.0 (𝑥 = ∅ → (𝜓𝜑))
bj-bdfindis.1 (𝑥 = 𝑦 → (𝜑𝜒))
bj-bdfindis.suc (𝑥 = suc 𝑦 → (𝜃𝜑))
bj-bdfindisg.nfa 𝑥𝐴
bj-bdfindisg.nfterm 𝑥𝜏
bj-bdfindisg.term (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
bj-bdfindisg ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bj-bdfindisg
StepHypRef Expression
1 bj-bdfindis.bd . . 3 BOUNDED 𝜑
2 bj-bdfindis.nf0 . . 3 𝑥𝜓
3 bj-bdfindis.nf1 . . 3 𝑥𝜒
4 bj-bdfindis.nfsuc . . 3 𝑥𝜃
5 bj-bdfindis.0 . . 3 (𝑥 = ∅ → (𝜓𝜑))
6 bj-bdfindis.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
7 bj-bdfindis.suc . . 3 (𝑥 = suc 𝑦 → (𝜃𝜑))
81, 2, 3, 4, 5, 6, 7bj-bdfindis 16310 . 2 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
9 bj-bdfindisg.nfa . . 3 𝑥𝐴
10 nfcv 2372 . . 3 𝑥ω
11 bj-bdfindisg.nfterm . . 3 𝑥𝜏
12 bj-bdfindisg.term . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
139, 10, 11, 12bj-rspg 16151 . 2 (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏))
148, 13syl 14 1 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wnf 1506  wcel 2200  wnfc 2359  wral 2508  c0 3491  suc csuc 4456  ωcom 4682  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4210  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247  ax-infvn 16304
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-nntrans  16314  bj-nnelirr  16316  bj-omtrans  16319
  Copyright terms: Public domain W3C validator