Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindisg GIF version

Theorem bj-bdfindisg 15510
Description: Version of bj-bdfindis 15509 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15509 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd BOUNDED 𝜑
bj-bdfindis.nf0 𝑥𝜓
bj-bdfindis.nf1 𝑥𝜒
bj-bdfindis.nfsuc 𝑥𝜃
bj-bdfindis.0 (𝑥 = ∅ → (𝜓𝜑))
bj-bdfindis.1 (𝑥 = 𝑦 → (𝜑𝜒))
bj-bdfindis.suc (𝑥 = suc 𝑦 → (𝜃𝜑))
bj-bdfindisg.nfa 𝑥𝐴
bj-bdfindisg.nfterm 𝑥𝜏
bj-bdfindisg.term (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
bj-bdfindisg ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bj-bdfindisg
StepHypRef Expression
1 bj-bdfindis.bd . . 3 BOUNDED 𝜑
2 bj-bdfindis.nf0 . . 3 𝑥𝜓
3 bj-bdfindis.nf1 . . 3 𝑥𝜒
4 bj-bdfindis.nfsuc . . 3 𝑥𝜃
5 bj-bdfindis.0 . . 3 (𝑥 = ∅ → (𝜓𝜑))
6 bj-bdfindis.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
7 bj-bdfindis.suc . . 3 (𝑥 = suc 𝑦 → (𝜃𝜑))
81, 2, 3, 4, 5, 6, 7bj-bdfindis 15509 . 2 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
9 bj-bdfindisg.nfa . . 3 𝑥𝐴
10 nfcv 2336 . . 3 𝑥ω
11 bj-bdfindisg.nfterm . . 3 𝑥𝜏
12 bj-bdfindisg.term . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
139, 10, 11, 12bj-rspg 15349 . 2 (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏))
148, 13syl 14 1 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323  wral 2472  c0 3447  suc csuc 4397  ωcom 4623  BOUNDED wbd 15374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4156  ax-pr 4239  ax-un 4465  ax-bd0 15375  ax-bdor 15378  ax-bdex 15381  ax-bdeq 15382  ax-bdel 15383  ax-bdsb 15384  ax-bdsep 15446  ax-infvn 15503
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624  df-bdc 15403  df-bj-ind 15489
This theorem is referenced by:  bj-nntrans  15513  bj-nnelirr  15515  bj-omtrans  15518
  Copyright terms: Public domain W3C validator