![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | GIF version |
Description: Version of bj-bdfindis 15439 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15439 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-bdfindisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-bdfindisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-bdfindisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-bdfindisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
2 | bj-bdfindis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-bdfindis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
4 | bj-bdfindis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
5 | bj-bdfindis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
6 | bj-bdfindis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | bj-bdfindis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 15439 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
9 | bj-bdfindisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
10 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑥ω | |
11 | bj-bdfindisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
12 | bj-bdfindisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
13 | 9, 10, 11, 12 | bj-rspg 15279 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
14 | 8, 13 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 ∀wral 2472 ∅c0 3446 suc csuc 4396 ωcom 4622 BOUNDED wbd 15304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4464 ax-bd0 15305 ax-bdor 15308 ax-bdex 15311 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 ax-bdsep 15376 ax-infvn 15433 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-bdc 15333 df-bj-ind 15419 |
This theorem is referenced by: bj-nntrans 15443 bj-nnelirr 15445 bj-omtrans 15448 |
Copyright terms: Public domain | W3C validator |