| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | GIF version | ||
| Description: Version of bj-bdfindis 16082 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 16082 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
| bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| bj-bdfindisg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-bdfindisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
| bj-bdfindisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
| Ref | Expression |
|---|---|
| bj-bdfindisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdfindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
| 2 | bj-bdfindis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-bdfindis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | bj-bdfindis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
| 5 | bj-bdfindis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 6 | bj-bdfindis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 7 | bj-bdfindis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 16082 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| 9 | bj-bdfindisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 10 | nfcv 2350 | . . 3 ⊢ Ⅎ𝑥ω | |
| 11 | bj-bdfindisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
| 12 | bj-bdfindisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
| 13 | 9, 10, 11, 12 | bj-rspg 15923 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
| 14 | 8, 13 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 Ⅎwnfc 2337 ∀wral 2486 ∅c0 3468 suc csuc 4430 ωcom 4656 BOUNDED wbd 15947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-nntrans 16086 bj-nnelirr 16088 bj-omtrans 16091 |
| Copyright terms: Public domain | W3C validator |