![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version |
Description: Version of bj-findis 14871 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 14871 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 14871 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑥ω | |
10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
12 | 8, 9, 10, 11 | bj-rspg 14679 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 ∀wral 2455 ∅c0 3424 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-bd0 14705 ax-bdim 14706 ax-bdan 14707 ax-bdor 14708 ax-bdn 14709 ax-bdal 14710 ax-bdex 14711 ax-bdeq 14712 ax-bdel 14713 ax-bdsb 14714 ax-bdsep 14776 ax-infvn 14833 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14733 df-bj-ind 14819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |