| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version | ||
| Description: Version of bj-findis 16300 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 16300 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
| bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
| Ref | Expression |
|---|---|
| bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
| 4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 7 | 1, 2, 3, 4, 5, 6 | bj-findis 16300 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| 8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 9 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥ω | |
| 10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
| 11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
| 12 | 8, 9, 10, 11 | bj-rspg 16109 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
| 13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 ∀wral 2508 ∅c0 3491 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-bd0 16134 ax-bdim 16135 ax-bdan 16136 ax-bdor 16137 ax-bdn 16138 ax-bdal 16139 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 ax-infvn 16262 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |