Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version |
Description: Version of bj-findis 13861 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 13861 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 13861 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥ω | |
10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
12 | 8, 9, 10, 11 | bj-rspg 13668 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 Ⅎwnfc 2295 ∀wral 2444 ∅c0 3409 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-bd0 13695 ax-bdim 13696 ax-bdan 13697 ax-bdor 13698 ax-bdn 13699 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |