| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version | ||
| Description: Version of bj-findis 16084 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 16084 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
| bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
| Ref | Expression |
|---|---|
| bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
| 4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 7 | 1, 2, 3, 4, 5, 6 | bj-findis 16084 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| 8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 9 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑥ω | |
| 10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
| 11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
| 12 | 8, 9, 10, 11 | bj-rspg 15893 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
| 13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 ∀wral 2485 ∅c0 3464 suc csuc 4425 ωcom 4651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4181 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-bd0 15918 ax-bdim 15919 ax-bdan 15920 ax-bdor 15921 ax-bdn 15922 ax-bdal 15923 ax-bdex 15924 ax-bdeq 15925 ax-bdel 15926 ax-bdsb 15927 ax-bdsep 15989 ax-infvn 16046 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-suc 4431 df-iom 4652 df-bdc 15946 df-bj-ind 16032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |