![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version |
Description: Version of bj-findis 15168 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15168 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
Ref | Expression |
---|---|
bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 15168 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2332 | . . 3 ⊢ Ⅎ𝑥ω | |
10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
12 | 8, 9, 10, 11 | bj-rspg 14976 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2160 Ⅎwnfc 2319 ∀wral 2468 ∅c0 3437 suc csuc 4380 ωcom 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-nul 4144 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-bd0 15002 ax-bdim 15003 ax-bdan 15004 ax-bdor 15005 ax-bdn 15006 ax-bdal 15007 ax-bdex 15008 ax-bdeq 15009 ax-bdel 15010 ax-bdsb 15011 ax-bdsep 15073 ax-infvn 15130 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-suc 4386 df-iom 4605 df-bdc 15030 df-bj-ind 15116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |