| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | GIF version | ||
| Description: Version of bj-findis 15625 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15625 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-findis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-findis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-findis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-findis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-findis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| bj-findisg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-findisg.nfterm | ⊢ Ⅎ𝑥𝜏 |
| bj-findisg.term | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) |
| Ref | Expression |
|---|---|
| bj-findisg | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-findis.nf0 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-findis.nf1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 3 | bj-findis.nfsuc | . . 3 ⊢ Ⅎ𝑥𝜃 | |
| 4 | bj-findis.0 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 5 | bj-findis.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 6 | bj-findis.suc | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 7 | 1, 2, 3, 4, 5, 6 | bj-findis 15625 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| 8 | bj-findisg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 9 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑥ω | |
| 10 | bj-findisg.nfterm | . . 3 ⊢ Ⅎ𝑥𝜏 | |
| 11 | bj-findisg.term | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) | |
| 12 | 8, 9, 10, 11 | bj-rspg 15433 | . 2 ⊢ (∀𝑥 ∈ ω 𝜑 → (𝐴 ∈ ω → 𝜏)) |
| 13 | 7, 12 | syl 14 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 ∅c0 3450 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-bd0 15459 ax-bdim 15460 ax-bdan 15461 ax-bdor 15462 ax-bdn 15463 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 ax-infvn 15587 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |