ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbriotag GIF version

Theorem csbriotag 5821
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
csbriotag (𝐴𝑉𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbriotag
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3052 . . 3 (𝑧 = 𝐴𝑧 / 𝑥(𝑦𝐵 𝜑) = 𝐴 / 𝑥(𝑦𝐵 𝜑))
2 dfsbcq2 2958 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32riotabidv 5811 . . 3 (𝑧 = 𝐴 → (𝑦𝐵 [𝑧 / 𝑥]𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2185 . 2 (𝑧 = 𝐴 → (𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)))
5 vex 2733 . . 3 𝑧 ∈ V
6 nfs1v 1932 . . . 4 𝑥[𝑧 / 𝑥]𝜑
7 nfcv 2312 . . . 4 𝑥𝐵
86, 7nfriota 5818 . . 3 𝑥(𝑦𝐵 [𝑧 / 𝑥]𝜑)
9 sbequ12 1764 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
109riotabidv 5811 . . 3 (𝑥 = 𝑧 → (𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑))
115, 8, 10csbief 3093 . 2 𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑)
124, 11vtoclg 2790 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  [wsb 1755  wcel 2141  [wsbc 2955  csb 3049  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-sn 3589  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator