| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| mp3an12.1 | ⊢ 𝜑 | 
| mp3an12.2 | ⊢ 𝜓 | 
| mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mp3an12 | ⊢ (𝜒 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
| 2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an1 1335 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mp3an12i 1352 ceqsralv 2794 brelrn 4899 funpr 5310 fpm 6740 ener 6838 ltaddnq 7474 ltadd1sr 7843 map2psrprg 7872 mul02 8413 ltapi 8663 div0ap 8729 divclapzi 8774 divcanap1zi 8775 divcanap2zi 8776 divrecapzi 8777 divcanap3zi 8778 divcanap4zi 8779 divassapzi 8789 divmulapzi 8790 divdirapzi 8791 redivclapzi 8805 ltm1 8873 mulgt1 8890 recgt1i 8925 recreclt 8927 ltmul1i 8947 ltdiv1i 8948 ltmuldivi 8949 ltmul2i 8950 lemul1i 8951 lemul2i 8952 cju 8988 nnge1 9013 nngt0 9015 nnrecgt0 9028 elnnnn0c 9294 elnnz1 9349 recnz 9419 eluzsubi 9629 ge0gtmnf 9898 m1expcl2 10653 1exp 10660 m1expeven 10678 expubnd 10688 iexpcyc 10736 expnbnd 10755 expnlbnd 10756 remim 11025 imval2 11059 cjdivapi 11100 absdivapzi 11319 fprodge1 11804 ef01bndlem 11921 sin01gt0 11927 cos01gt0 11928 cos12dec 11933 absefib 11936 efieq1re 11937 zeo3 12033 evend2 12054 cnbl0 14770 reeff1olem 15007 sincosq1sgn 15062 sincosq3sgn 15064 sincosq4sgn 15065 rpelogb 15185 lgsdir2lem2 15270 | 
| Copyright terms: Public domain | W3C validator |