![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | ⊢ 𝜑 |
mp3an12.2 | ⊢ 𝜓 |
mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an1 1335 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an12i 1352 ceqsralv 2791 brelrn 4896 funpr 5307 fpm 6737 ener 6835 ltaddnq 7469 ltadd1sr 7838 map2psrprg 7867 mul02 8408 ltapi 8657 div0ap 8723 divclapzi 8768 divcanap1zi 8769 divcanap2zi 8770 divrecapzi 8771 divcanap3zi 8772 divcanap4zi 8773 divassapzi 8783 divmulapzi 8784 divdirapzi 8785 redivclapzi 8799 ltm1 8867 mulgt1 8884 recgt1i 8919 recreclt 8921 ltmul1i 8941 ltdiv1i 8942 ltmuldivi 8943 ltmul2i 8944 lemul1i 8945 lemul2i 8946 cju 8982 nnge1 9007 nngt0 9009 nnrecgt0 9022 elnnnn0c 9288 elnnz1 9343 recnz 9413 eluzsubi 9623 ge0gtmnf 9892 m1expcl2 10635 1exp 10642 m1expeven 10660 expubnd 10670 iexpcyc 10718 expnbnd 10737 expnlbnd 10738 remim 11007 imval2 11041 cjdivapi 11082 absdivapzi 11301 fprodge1 11785 ef01bndlem 11902 sin01gt0 11908 cos01gt0 11909 cos12dec 11914 absefib 11917 efieq1re 11918 zeo3 12012 evend2 12033 cnbl0 14713 reeff1olem 14947 sincosq1sgn 15002 sincosq3sgn 15004 sincosq4sgn 15005 rpelogb 15122 lgsdir2lem2 15186 |
Copyright terms: Public domain | W3C validator |