Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | ⊢ 𝜑 |
mp3an12.2 | ⊢ 𝜓 |
mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an1 1306 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 421 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: mp3an12i 1323 ceqsralv 2743 brelrn 4819 funpr 5222 fpm 6626 ener 6724 ltaddnq 7327 ltadd1sr 7696 map2psrprg 7725 mul02 8262 ltapi 8511 div0ap 8575 divclapzi 8620 divcanap1zi 8621 divcanap2zi 8622 divrecapzi 8623 divcanap3zi 8624 divcanap4zi 8625 divassapzi 8635 divmulapzi 8636 divdirapzi 8637 redivclapzi 8651 ltm1 8717 mulgt1 8734 recgt1i 8769 recreclt 8771 ltmul1i 8791 ltdiv1i 8792 ltmuldivi 8793 ltmul2i 8794 lemul1i 8795 lemul2i 8796 cju 8832 nnge1 8856 nngt0 8858 nnrecgt0 8871 elnnnn0c 9135 elnnz1 9190 recnz 9257 eluzsubi 9466 ge0gtmnf 9727 m1expcl2 10441 1exp 10448 m1expeven 10466 expubnd 10476 iexpcyc 10523 expnbnd 10541 expnlbnd 10542 remim 10760 imval2 10794 cjdivapi 10835 absdivapzi 11054 fprodge1 11536 ef01bndlem 11653 sin01gt0 11658 cos01gt0 11659 cos12dec 11664 absefib 11667 efieq1re 11668 zeo3 11759 evend2 11780 cnbl0 12945 reeff1olem 13103 sincosq1sgn 13158 sincosq3sgn 13160 sincosq4sgn 13161 rpelogb 13277 |
Copyright terms: Public domain | W3C validator |