![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | ⊢ 𝜑 |
mp3an12.2 | ⊢ 𝜓 |
mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an1 1335 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an12i 1352 ceqsralv 2791 brelrn 4895 funpr 5306 fpm 6735 ener 6833 ltaddnq 7467 ltadd1sr 7836 map2psrprg 7865 mul02 8406 ltapi 8655 div0ap 8721 divclapzi 8766 divcanap1zi 8767 divcanap2zi 8768 divrecapzi 8769 divcanap3zi 8770 divcanap4zi 8771 divassapzi 8781 divmulapzi 8782 divdirapzi 8783 redivclapzi 8797 ltm1 8865 mulgt1 8882 recgt1i 8917 recreclt 8919 ltmul1i 8939 ltdiv1i 8940 ltmuldivi 8941 ltmul2i 8942 lemul1i 8943 lemul2i 8944 cju 8980 nnge1 9005 nngt0 9007 nnrecgt0 9020 elnnnn0c 9285 elnnz1 9340 recnz 9410 eluzsubi 9620 ge0gtmnf 9889 m1expcl2 10632 1exp 10639 m1expeven 10657 expubnd 10667 iexpcyc 10715 expnbnd 10734 expnlbnd 10735 remim 11004 imval2 11038 cjdivapi 11079 absdivapzi 11298 fprodge1 11782 ef01bndlem 11899 sin01gt0 11905 cos01gt0 11906 cos12dec 11911 absefib 11914 efieq1re 11915 zeo3 12009 evend2 12030 cnbl0 14702 reeff1olem 14906 sincosq1sgn 14961 sincosq3sgn 14963 sincosq4sgn 14964 rpelogb 15081 lgsdir2lem2 15145 |
Copyright terms: Public domain | W3C validator |