| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 | ⊢ 𝜑 |
| mp3an12.2 | ⊢ 𝜓 |
| mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
| 2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an1 1335 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an12i 1352 ceqsralv 2794 brelrn 4900 funpr 5311 fpm 6749 ener 6847 ltaddnq 7491 ltadd1sr 7860 map2psrprg 7889 mul02 8430 ltapi 8680 div0ap 8746 divclapzi 8791 divcanap1zi 8792 divcanap2zi 8793 divrecapzi 8794 divcanap3zi 8795 divcanap4zi 8796 divassapzi 8806 divmulapzi 8807 divdirapzi 8808 redivclapzi 8822 ltm1 8890 mulgt1 8907 recgt1i 8942 recreclt 8944 ltmul1i 8964 ltdiv1i 8965 ltmuldivi 8966 ltmul2i 8967 lemul1i 8968 lemul2i 8969 cju 9005 nnge1 9030 nngt0 9032 nnrecgt0 9045 elnnnn0c 9311 elnnz1 9366 recnz 9436 eluzsubi 9646 ge0gtmnf 9915 m1expcl2 10670 1exp 10677 m1expeven 10695 expubnd 10705 iexpcyc 10753 expnbnd 10772 expnlbnd 10773 remim 11042 imval2 11076 cjdivapi 11117 absdivapzi 11336 fprodge1 11821 ef01bndlem 11938 sin01gt0 11944 cos01gt0 11945 cos12dec 11950 absefib 11953 efieq1re 11954 zeo3 12050 evend2 12071 cnbl0 14854 reeff1olem 15091 sincosq1sgn 15146 sincosq3sgn 15148 sincosq4sgn 15149 rpelogb 15269 lgsdir2lem2 15354 |
| Copyright terms: Public domain | W3C validator |