| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 | ⊢ 𝜑 |
| mp3an12.2 | ⊢ 𝜓 |
| mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
| 2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an1 1337 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an12i 1354 ceqsralv 2803 brelrn 4912 funpr 5327 fpm 6770 ener 6873 ltaddnq 7522 ltadd1sr 7891 map2psrprg 7920 mul02 8461 ltapi 8711 div0ap 8777 divclapzi 8822 divcanap1zi 8823 divcanap2zi 8824 divrecapzi 8825 divcanap3zi 8826 divcanap4zi 8827 divassapzi 8837 divmulapzi 8838 divdirapzi 8839 redivclapzi 8853 ltm1 8921 mulgt1 8938 recgt1i 8973 recreclt 8975 ltmul1i 8995 ltdiv1i 8996 ltmuldivi 8997 ltmul2i 8998 lemul1i 8999 lemul2i 9000 cju 9036 nnge1 9061 nngt0 9063 nnrecgt0 9076 elnnnn0c 9342 elnnz1 9397 recnz 9468 eluzsubi 9678 ge0gtmnf 9947 m1expcl2 10708 1exp 10715 m1expeven 10733 expubnd 10743 iexpcyc 10791 expnbnd 10810 expnlbnd 10811 remim 11204 imval2 11238 cjdivapi 11279 absdivapzi 11498 fprodge1 11983 ef01bndlem 12100 sin01gt0 12106 cos01gt0 12107 cos12dec 12112 absefib 12115 efieq1re 12116 zeo3 12212 evend2 12233 cnbl0 15039 reeff1olem 15276 sincosq1sgn 15331 sincosq3sgn 15333 sincosq4sgn 15334 rpelogb 15454 lgsdir2lem2 15539 |
| Copyright terms: Public domain | W3C validator |