Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | ⊢ 𝜑 |
mp3an12.2 | ⊢ 𝜓 |
mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an1 1314 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 421 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3an12i 1331 ceqsralv 2757 brelrn 4837 funpr 5240 fpm 6647 ener 6745 ltaddnq 7348 ltadd1sr 7717 map2psrprg 7746 mul02 8285 ltapi 8534 div0ap 8598 divclapzi 8643 divcanap1zi 8644 divcanap2zi 8645 divrecapzi 8646 divcanap3zi 8647 divcanap4zi 8648 divassapzi 8658 divmulapzi 8659 divdirapzi 8660 redivclapzi 8674 ltm1 8741 mulgt1 8758 recgt1i 8793 recreclt 8795 ltmul1i 8815 ltdiv1i 8816 ltmuldivi 8817 ltmul2i 8818 lemul1i 8819 lemul2i 8820 cju 8856 nnge1 8880 nngt0 8882 nnrecgt0 8895 elnnnn0c 9159 elnnz1 9214 recnz 9284 eluzsubi 9493 ge0gtmnf 9759 m1expcl2 10477 1exp 10484 m1expeven 10502 expubnd 10512 iexpcyc 10559 expnbnd 10578 expnlbnd 10579 remim 10802 imval2 10836 cjdivapi 10877 absdivapzi 11096 fprodge1 11580 ef01bndlem 11697 sin01gt0 11702 cos01gt0 11703 cos12dec 11708 absefib 11711 efieq1re 11712 zeo3 11805 evend2 11826 cnbl0 13174 reeff1olem 13332 sincosq1sgn 13387 sincosq3sgn 13389 sincosq4sgn 13390 rpelogb 13507 lgsdir2lem2 13570 |
Copyright terms: Public domain | W3C validator |