| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 | ⊢ 𝜑 |
| mp3an12.2 | ⊢ 𝜓 |
| mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
| 2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an1 1335 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an12i 1352 ceqsralv 2794 brelrn 4900 funpr 5311 fpm 6749 ener 6847 ltaddnq 7493 ltadd1sr 7862 map2psrprg 7891 mul02 8432 ltapi 8682 div0ap 8748 divclapzi 8793 divcanap1zi 8794 divcanap2zi 8795 divrecapzi 8796 divcanap3zi 8797 divcanap4zi 8798 divassapzi 8808 divmulapzi 8809 divdirapzi 8810 redivclapzi 8824 ltm1 8892 mulgt1 8909 recgt1i 8944 recreclt 8946 ltmul1i 8966 ltdiv1i 8967 ltmuldivi 8968 ltmul2i 8969 lemul1i 8970 lemul2i 8971 cju 9007 nnge1 9032 nngt0 9034 nnrecgt0 9047 elnnnn0c 9313 elnnz1 9368 recnz 9438 eluzsubi 9648 ge0gtmnf 9917 m1expcl2 10672 1exp 10679 m1expeven 10697 expubnd 10707 iexpcyc 10755 expnbnd 10774 expnlbnd 10775 remim 11044 imval2 11078 cjdivapi 11119 absdivapzi 11338 fprodge1 11823 ef01bndlem 11940 sin01gt0 11946 cos01gt0 11947 cos12dec 11952 absefib 11955 efieq1re 11956 zeo3 12052 evend2 12073 cnbl0 14878 reeff1olem 15115 sincosq1sgn 15170 sincosq3sgn 15172 sincosq4sgn 15173 rpelogb 15293 lgsdir2lem2 15378 |
| Copyright terms: Public domain | W3C validator |