| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 | ⊢ 𝜑 |
| mp3an12.2 | ⊢ 𝜓 |
| mp3an12.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ 𝜓 | |
| 2 | mp3an12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an1 1337 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an12i 1354 ceqsralv 2808 brelrn 4930 funpr 5345 fpm 6791 ener 6894 ltaddnq 7555 ltadd1sr 7924 map2psrprg 7953 mul02 8494 ltapi 8744 div0ap 8810 divclapzi 8855 divcanap1zi 8856 divcanap2zi 8857 divrecapzi 8858 divcanap3zi 8859 divcanap4zi 8860 divassapzi 8870 divmulapzi 8871 divdirapzi 8872 redivclapzi 8886 ltm1 8954 mulgt1 8971 recgt1i 9006 recreclt 9008 ltmul1i 9028 ltdiv1i 9029 ltmuldivi 9030 ltmul2i 9031 lemul1i 9032 lemul2i 9033 cju 9069 nnge1 9094 nngt0 9096 nnrecgt0 9109 elnnnn0c 9375 elnnz1 9430 recnz 9501 eluzsubi 9711 ge0gtmnf 9980 m1expcl2 10743 1exp 10750 m1expeven 10768 expubnd 10778 iexpcyc 10826 expnbnd 10845 expnlbnd 10846 remim 11286 imval2 11320 cjdivapi 11361 absdivapzi 11580 fprodge1 12065 ef01bndlem 12182 sin01gt0 12188 cos01gt0 12189 cos12dec 12194 absefib 12197 efieq1re 12198 zeo3 12294 evend2 12315 cnbl0 15121 reeff1olem 15358 sincosq1sgn 15413 sincosq3sgn 15415 sincosq4sgn 15416 rpelogb 15536 lgsdir2lem2 15621 |
| Copyright terms: Public domain | W3C validator |