![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elpw | GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3348 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 3995 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 3463 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 145 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1448 ⊆ wss 3021 ∅c0 3310 𝒫 cpw 3457 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-nul 3994 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-dif 3023 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 |
This theorem is referenced by: ordpwsucexmid 4423 |
Copyright terms: Public domain | W3C validator |