| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elpw | GIF version | ||
| Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| Ref | Expression |
|---|---|
| 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3530 | . 2 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elpw 3655 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 |
| This theorem is referenced by: ordpwsucexmid 4659 pw1on 7399 pw1ne0 7401 pw1nct 16300 |
| Copyright terms: Public domain | W3C validator |