ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elpw GIF version

Theorem 0elpw 4197
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
Assertion
Ref Expression
0elpw ∅ ∈ 𝒫 𝐴

Proof of Theorem 0elpw
StepHypRef Expression
1 0ss 3489 . 2 ∅ ⊆ 𝐴
2 0ex 4160 . . 3 ∅ ∈ V
32elpw 3611 . 2 (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴)
41, 3mpbir 146 1 ∅ ∈ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  wss 3157  c0 3450  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607
This theorem is referenced by:  ordpwsucexmid  4606  pw1on  7293  pw1ne0  7295  pw1nct  15647
  Copyright terms: Public domain W3C validator