![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elpw | GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3461 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 4129 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 3581 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 146 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ⊆ wss 3129 ∅c0 3422 𝒫 cpw 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4128 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-dif 3131 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 |
This theorem is referenced by: ordpwsucexmid 4568 pw1on 7222 pw1ne0 7224 pw1nct 14612 |
Copyright terms: Public domain | W3C validator |