ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elpw GIF version

Theorem 0elpw 4247
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
Assertion
Ref Expression
0elpw ∅ ∈ 𝒫 𝐴

Proof of Theorem 0elpw
StepHypRef Expression
1 0ss 3530 . 2 ∅ ⊆ 𝐴
2 0ex 4210 . . 3 ∅ ∈ V
32elpw 3655 . 2 (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴)
41, 3mpbir 146 1 ∅ ∈ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  wss 3197  c0 3491  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651
This theorem is referenced by:  ordpwsucexmid  4659  pw1on  7399  pw1ne0  7401  pw1nct  16300
  Copyright terms: Public domain W3C validator