![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elpw | GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3486 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 4157 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 3608 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 146 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ⊆ wss 3154 ∅c0 3447 𝒫 cpw 3602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 |
This theorem is referenced by: ordpwsucexmid 4603 pw1on 7288 pw1ne0 7290 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |