ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl GIF version

Theorem distrlem5prl 7560
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7546 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1017 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 7546 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1016 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 7442 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 7349 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvl 7486 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 7443 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 7350 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvl 7486 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1016 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 464 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 7443 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvl 7486 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1017 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4prl 7558 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 5874 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2187 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2238 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20syl6bi 163 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 124 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 367 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 81 . . . . . . . . . . . 12 (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 367 . . . . . . . . . . 11 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 78 . . . . . . . . . 10 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2598 . . . . . . . . 9 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2599 . . . . . . . 8 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 79 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 150 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 254 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 150 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2599 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 150 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3159 1 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wrex 2454  wss 3127  cfv 5208  (class class class)co 5865  1st c1st 6129   +Q cplq 7256   ·Q cmq 7257  Pcnp 7265   +P cpp 7267   ·P cmp 7268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-iplp 7442  df-imp 7443
This theorem is referenced by:  distrprg  7562
  Copyright terms: Public domain W3C validator