ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl GIF version

Theorem distrlem5prl 7729
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7715 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1020 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 7715 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1019 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 7611 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 7518 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvl 7655 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 7612 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 7519 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvl 7655 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1019 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 464 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 7612 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvl 7655 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1020 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4prl 7727 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 5971 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2218 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2269 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20biimtrdi 163 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 124 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 367 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 81 . . . . . . . . . . . 12 (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 367 . . . . . . . . . . 11 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 78 . . . . . . . . . 10 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2630 . . . . . . . . 9 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2631 . . . . . . . 8 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 79 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 150 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 254 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 150 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2631 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 150 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3203 1 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wrex 2486  wss 3170  cfv 5285  (class class class)co 5962  1st c1st 6242   +Q cplq 7425   ·Q cmq 7426  Pcnp 7434   +P cpp 7436   ·P cmp 7437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609  df-iplp 7611  df-imp 7612
This theorem is referenced by:  distrprg  7731
  Copyright terms: Public domain W3C validator