ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5pru GIF version

Theorem distrlem5pru 7577
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5pru ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5pru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7562 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1017 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 7562 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1016 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 7458 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 7365 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvu 7503 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 7459 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 7366 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvu 7503 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1016 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 464 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 7459 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvu 7503 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1017 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4pru 7575 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 5878 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2189 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2240 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20syl6bi 163 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 124 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 367 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 81 . . . . . . . . . . . 12 (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 367 . . . . . . . . . . 11 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 78 . . . . . . . . . 10 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2600 . . . . . . . . 9 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2601 . . . . . . . 8 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 79 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 150 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 254 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 150 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2601 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 150 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3161 1 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wrex 2456  wss 3129  cfv 5212  (class class class)co 5869  2nd c2nd 6134   +Q cplq 7272   ·Q cmq 7273  Pcnp 7281   +P cpp 7283   ·P cmp 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-imp 7459
This theorem is referenced by:  distrprg  7578
  Copyright terms: Public domain W3C validator