 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5pru GIF version

Theorem distrlem5pru 7049
 Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5pru ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5pru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7034 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 959 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 7034 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 958 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 6930 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 6837 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvu 6975 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 403 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 6931 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 6838 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvu 6975 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 958 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 452 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 6931 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvu 6975 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 959 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4pru 7047 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 5600 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2094 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2145 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20syl6bi 161 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 122 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 155 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 359 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 80 . . . . . . . . . . . 12 (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 359 . . . . . . . . . . 11 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 77 . . . . . . . . . 10 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2488 . . . . . . . . 9 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2489 . . . . . . . 8 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 78 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 148 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 251 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 148 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2489 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 148 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3016 1 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∧ w3a 920   = wceq 1285   ∈ wcel 1434  ∃wrex 2354   ⊆ wss 2984  ‘cfv 4969  (class class class)co 5591  2nd c2nd 5845   +Q cplq 6744   ·Q cmq 6745  Pcnp 6753   +P cpp 6755   ·P cmp 6756 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-iplp 6930  df-imp 6931 This theorem is referenced by:  distrprg  7050
 Copyright terms: Public domain W3C validator