ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5pru GIF version

Theorem distrlem5pru 7774
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5pru ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5pru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7759 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1041 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 7759 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1040 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 7655 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 7562 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvu 7700 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 7656 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 7563 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvu 7700 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1040 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 464 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 7656 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvu 7700 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1041 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4pru 7772 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 6010 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2241 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2292 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20biimtrdi 163 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 124 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 367 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 81 . . . . . . . . . . . 12 (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 367 . . . . . . . . . . 11 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 78 . . . . . . . . . 10 ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2654 . . . . . . . . 9 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2655 . . . . . . . 8 (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 79 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (2nd𝐴)∃𝑦 ∈ (2nd𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 150 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 254 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 150 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2655 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (2nd ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (2nd ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 150 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3230 1 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  wss 3197  cfv 5318  (class class class)co 6001  2nd c2nd 6285   +Q cplq 7469   ·Q cmq 7470  Pcnp 7478   +P cpp 7480   ·P cmp 7481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-imp 7656
This theorem is referenced by:  distrprg  7775
  Copyright terms: Public domain W3C validator