Proof of Theorem relcoi1
Step | Hyp | Ref
| Expression |
1 | | relfld 5139 |
. . 3
⊢ (Rel
𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
2 | | resundi 4904 |
. . . . 5
⊢ ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (( I ↾ dom
𝑅) ∪ ( I ↾ ran
𝑅)) |
3 | | coeq2 4769 |
. . . . 5
⊢ (( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (( I ↾ dom
𝑅) ∪ ( I ↾ ran
𝑅)) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅)))) |
4 | | coundi 5112 |
. . . . . . 7
⊢ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) |
5 | | resco 5115 |
. . . . . . . 8
⊢ ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) |
6 | | coi1 5126 |
. . . . . . . . 9
⊢ (Rel
𝑅 → (𝑅 ∘ I ) = 𝑅) |
7 | | reseq1 4885 |
. . . . . . . . . 10
⊢ ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅)) |
8 | | resdm 4930 |
. . . . . . . . . . 11
⊢ (Rel
𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) |
9 | | eqtr 2188 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) |
10 | | eqtr 2188 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅) |
11 | | resco 5115 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) |
12 | | uneq1 3274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅)))) |
13 | | reseq1 4885 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) |
14 | | eqtr 2188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ ran 𝑅)) = (𝑅 ↾ ran 𝑅)) |
15 | 14 | uneq2d 3281 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) |
16 | | eqtr 2188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) |
17 | | resss 4915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ↾ ran 𝑅) ⊆ 𝑅 |
18 | | ssequn2 3300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) |
19 | 17, 18 | mpbi 144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 |
20 | 19, 6 | eqtr4id 2222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (Rel
𝑅 → (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I )) |
21 | | eqeq1 2177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I ))) |
22 | 20, 21 | syl5ibr 155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
23 | 16, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
24 | 23 | ex 114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
25 | 24 | com3l 81 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
26 | 15, 25 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
27 | 26 | ex 114 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
28 | 27 | eqcoms 2173 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
29 | 28 | com3l 81 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
30 | 13, 29 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
31 | 6, 30 | mpcom 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
32 | 31 | com3l 81 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
33 | 11, 12, 32 | mpsyl 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
34 | 10, 33 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
35 | 34 | ex 114 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
36 | 35 | eqcoms 2173 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
37 | 36 | com3l 81 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
38 | 9, 37 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
39 | 38 | ex 114 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
40 | 39 | com3l 81 |
. . . . . . . . . . 11
⊢ ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
41 | 8, 40 | mpcom 36 |
. . . . . . . . . 10
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
42 | 7, 41 | syl5com 29 |
. . . . . . . . 9
⊢ ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
43 | 6, 42 | mpcom 36 |
. . . . . . . 8
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
44 | 5, 43 | mpi 15 |
. . . . . . 7
⊢ (Rel
𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )) |
45 | 4, 44 | eqtrid 2215 |
. . . . . 6
⊢ (Rel
𝑅 → (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )) |
46 | | eqeq1 2177 |
. . . . . 6
⊢ ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
47 | 45, 46 | syl5ibr 155 |
. . . . 5
⊢ ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))) |
48 | 2, 3, 47 | mp2b 8 |
. . . 4
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )) |
49 | | reseq2 4886 |
. . . . . 6
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
50 | 49 | coeq2d 4773 |
. . . . 5
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
51 | 50 | eqeq1d 2179 |
. . . 4
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I ) ↔ (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))) |
52 | 48, 51 | syl5ibr 155 |
. . 3
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I ))) |
53 | 1, 52 | mpcom 36 |
. 2
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I )) |
54 | 53, 6 | eqtrd 2203 |
1
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |