ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi1 GIF version

Theorem relcoi1 5161
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.)
Assertion
Ref Expression
relcoi1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)

Proof of Theorem relcoi1
StepHypRef Expression
1 relfld 5158 . . 3 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
2 resundi 4921 . . . . 5 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))
3 coeq2 4786 . . . . 5 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))))
4 coundi 5131 . . . . . . 7 (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅)))
5 resco 5134 . . . . . . . 8 ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅))
6 coi1 5145 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ I ) = 𝑅)
7 reseq1 4902 . . . . . . . . . 10 ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅))
8 resdm 4947 . . . . . . . . . . 11 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
9 eqtr 2195 . . . . . . . . . . . . . 14 ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅)
10 eqtr 2195 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅)
11 resco 5134 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅))
12 uneq1 3283 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))))
13 reseq1 4902 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅))
14 eqtr 2195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ ran 𝑅)) = (𝑅 ↾ ran 𝑅))
1514uneq2d 3290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
16 eqtr 2195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
17 resss 4932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
18 ssequn2 3309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
1917, 18mpbi 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅
2019, 6eqtr4id 2229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑅 → (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I ))
21 eqeq1 2184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I )))
2220, 21imbitrrid 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
2316, 22syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
2423ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2524com3l 81 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2615, 25syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2726ex 115 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
2827eqcoms 2180 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
2928com3l 81 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
3013, 29syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
316, 30mpcom 36 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3231com3l 81 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3311, 12, 32mpsyl 65 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
3410, 33syl 14 . . . . . . . . . . . . . . . . 17 (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
3534ex 115 . . . . . . . . . . . . . . . 16 ((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3635eqcoms 2180 . . . . . . . . . . . . . . 15 (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3736com3l 81 . . . . . . . . . . . . . 14 (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
389, 37syl 14 . . . . . . . . . . . . 13 ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3938ex 115 . . . . . . . . . . . 12 (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
4039com3l 81 . . . . . . . . . . 11 ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
418, 40mpcom 36 . . . . . . . . . 10 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
427, 41syl5com 29 . . . . . . . . 9 ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
436, 42mpcom 36 . . . . . . . 8 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
445, 43mpi 15 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))
454, 44eqtrid 2222 . . . . . 6 (Rel 𝑅 → (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))
46 eqeq1 2184 . . . . . 6 ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
4745, 46imbitrrid 156 . . . . 5 ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )))
482, 3, 47mp2b 8 . . . 4 (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))
49 reseq2 4903 . . . . . 6 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5049coeq2d 4790 . . . . 5 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
5150eqeq1d 2186 . . . 4 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I ) ↔ (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )))
5248, 51imbitrrid 156 . . 3 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I )))
531, 52mpcom 36 . 2 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I ))
5453, 6eqtrd 2210 1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  cun 3128  wss 3130   cuni 3810   I cid 4289  dom cdm 4627  ran crn 4628  cres 4629  ccom 4631  Rel wrel 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator