Proof of Theorem relcoi1
| Step | Hyp | Ref
| Expression |
| 1 | | relfld 5199 |
. . 3
⊢ (Rel
𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| 2 | | resundi 4960 |
. . . . 5
⊢ ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (( I ↾ dom
𝑅) ∪ ( I ↾ ran
𝑅)) |
| 3 | | coeq2 4825 |
. . . . 5
⊢ (( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (( I ↾ dom
𝑅) ∪ ( I ↾ ran
𝑅)) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅)))) |
| 4 | | coundi 5172 |
. . . . . . 7
⊢ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) |
| 5 | | resco 5175 |
. . . . . . . 8
⊢ ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) |
| 6 | | coi1 5186 |
. . . . . . . . 9
⊢ (Rel
𝑅 → (𝑅 ∘ I ) = 𝑅) |
| 7 | | reseq1 4941 |
. . . . . . . . . 10
⊢ ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅)) |
| 8 | | resdm 4986 |
. . . . . . . . . . 11
⊢ (Rel
𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) |
| 9 | | eqtr 2214 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) |
| 10 | | eqtr 2214 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅) |
| 11 | | resco 5175 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) |
| 12 | | uneq1 3311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅)))) |
| 13 | | reseq1 4941 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) |
| 14 | | eqtr 2214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ ran 𝑅)) = (𝑅 ↾ ran 𝑅)) |
| 15 | 14 | uneq2d 3318 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) |
| 16 | | eqtr 2214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) |
| 17 | | resss 4971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ↾ ran 𝑅) ⊆ 𝑅 |
| 18 | | ssequn2 3337 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) |
| 19 | 17, 18 | mpbi 145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 |
| 20 | 19, 6 | eqtr4id 2248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (Rel
𝑅 → (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I )) |
| 21 | | eqeq1 2203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I ))) |
| 22 | 20, 21 | imbitrrid 156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 23 | 16, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 24 | 23 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 25 | 24 | com3l 81 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 26 | 15, 25 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 27 | 26 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 28 | 27 | eqcoms 2199 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 29 | 28 | com3l 81 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 30 | 13, 29 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 31 | 6, 30 | mpcom 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 32 | 31 | com3l 81 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 33 | 11, 12, 32 | mpsyl 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 34 | 10, 33 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 35 | 34 | ex 115 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 36 | 35 | eqcoms 2199 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 37 | 36 | com3l 81 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 38 | 9, 37 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 39 | 38 | ex 115 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 40 | 39 | com3l 81 |
. . . . . . . . . . 11
⊢ ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))) |
| 41 | 8, 40 | mpcom 36 |
. . . . . . . . . 10
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 42 | 7, 41 | syl5com 29 |
. . . . . . . . 9
⊢ ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))) |
| 43 | 6, 42 | mpcom 36 |
. . . . . . . 8
⊢ (Rel
𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 44 | 5, 43 | mpi 15 |
. . . . . . 7
⊢ (Rel
𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )) |
| 45 | 4, 44 | eqtrid 2241 |
. . . . . 6
⊢ (Rel
𝑅 → (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )) |
| 46 | | eqeq1 2203 |
. . . . . 6
⊢ ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))) |
| 47 | 45, 46 | imbitrrid 156 |
. . . . 5
⊢ ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))) |
| 48 | 2, 3, 47 | mp2b 8 |
. . . 4
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )) |
| 49 | | reseq2 4942 |
. . . . . 6
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 50 | 49 | coeq2d 4829 |
. . . . 5
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
| 51 | 50 | eqeq1d 2205 |
. . . 4
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I ) ↔ (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))) |
| 52 | 48, 51 | imbitrrid 156 |
. . 3
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I ))) |
| 53 | 1, 52 | mpcom 36 |
. 2
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ∘ I )) |
| 54 | 53, 6 | eqtrd 2229 |
1
⊢ (Rel
𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |