![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3r | GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2120 euexex 2121 mob 2931 issref 5023 relresfld 5170 poxp 6247 nndi 6501 nnmass 6502 pr2ne 7205 distrlem5prl 7599 distrlem5pru 7600 lbreu 8916 flqeqceilz 10332 divconjdvds 11869 algcvga 12065 algfx 12066 lmodfopnelem1 13513 fiinopn 13800 |
Copyright terms: Public domain | W3C validator |