Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com3r | GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com13 80 com3l 81 com14 88 expd 256 moexexdc 2098 euexex 2099 mob 2908 issref 4986 relresfld 5133 poxp 6200 nndi 6454 nnmass 6455 pr2ne 7148 distrlem5prl 7527 distrlem5pru 7528 lbreu 8840 flqeqceilz 10253 divconjdvds 11787 algcvga 11983 algfx 11984 fiinopn 12652 |
Copyright terms: Public domain | W3C validator |