| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3r | GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2162 euexex 2163 mob 2985 issref 5111 relresfld 5258 poxp 6384 nndi 6640 nnmass 6641 pr2ne 7373 distrlem5prl 7781 distrlem5pru 7782 lbreu 9100 flqeqceilz 10548 divconjdvds 12368 algcvga 12581 algfx 12582 lmodfopnelem1 14296 fiinopn 14686 wlk1walkdom 16080 |
| Copyright terms: Public domain | W3C validator |