| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3r | GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2162 euexex 2163 mob 2985 issref 5107 relresfld 5254 poxp 6368 nndi 6622 nnmass 6623 pr2ne 7353 distrlem5prl 7761 distrlem5pru 7762 lbreu 9080 flqeqceilz 10527 divconjdvds 12346 algcvga 12559 algfx 12560 lmodfopnelem1 14273 fiinopn 14663 |
| Copyright terms: Public domain | W3C validator |