![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3r | GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2110 euexex 2111 mob 2921 issref 5013 relresfld 5160 poxp 6235 nndi 6489 nnmass 6490 pr2ne 7193 distrlem5prl 7587 distrlem5pru 7588 lbreu 8904 flqeqceilz 10320 divconjdvds 11857 algcvga 12053 algfx 12054 lmodfopnelem1 13419 fiinopn 13589 |
Copyright terms: Public domain | W3C validator |