| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3r | GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2139 euexex 2140 mob 2957 issref 5071 relresfld 5218 poxp 6328 nndi 6582 nnmass 6583 pr2ne 7312 distrlem5prl 7712 distrlem5pru 7713 lbreu 9031 flqeqceilz 10476 divconjdvds 12210 algcvga 12423 algfx 12424 lmodfopnelem1 14136 fiinopn 14526 |
| Copyright terms: Public domain | W3C validator |