ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3r GIF version

Theorem com3r 78
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
com3r (𝜒 → (𝜑 → (𝜓𝜃)))

Proof of Theorem com3r
StepHypRef Expression
1 com3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com23 77 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
32com12 30 1 (𝜒 → (𝜑 → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  com13  79  com3l  80  com14  87  expd  254  moexexdc  2032  euexex  2033  mob  2797  issref  4809  relresfld  4955  poxp  5989  nndi  6239  nnmass  6240  pr2ne  6810  distrlem5prl  7135  distrlem5pru  7136  lbreu  8396  flqeqceilz  9713  divconjdvds  11115  ialgcvga  11298  ialgfx  11299  fiinopn  11484
  Copyright terms: Public domain W3C validator