![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3r | GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 77 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: com13 79 com3l 80 com14 87 expd 254 moexexdc 2032 euexex 2033 mob 2797 issref 4809 relresfld 4955 poxp 5989 nndi 6239 nnmass 6240 pr2ne 6810 distrlem5prl 7135 distrlem5pru 7136 lbreu 8396 flqeqceilz 9713 divconjdvds 11115 ialgcvga 11298 ialgfx 11299 fiinopn 11484 |
Copyright terms: Public domain | W3C validator |