![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com3r | GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2126 euexex 2127 mob 2942 issref 5048 relresfld 5195 poxp 6285 nndi 6539 nnmass 6540 pr2ne 7252 distrlem5prl 7646 distrlem5pru 7647 lbreu 8964 flqeqceilz 10389 divconjdvds 11991 algcvga 12189 algfx 12190 lmodfopnelem1 13820 fiinopn 14172 |
Copyright terms: Public domain | W3C validator |