| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3r | GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2129 euexex 2130 mob 2946 issref 5053 relresfld 5200 poxp 6294 nndi 6548 nnmass 6549 pr2ne 7264 distrlem5prl 7658 distrlem5pru 7659 lbreu 8977 flqeqceilz 10415 divconjdvds 12019 algcvga 12232 algfx 12233 lmodfopnelem1 13927 fiinopn 14287 |
| Copyright terms: Public domain | W3C validator |