| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com3r | GIF version | ||
| Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com3r | ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com13 80 com3l 81 com14 88 expd 258 moexexdc 2129 euexex 2130 mob 2946 issref 5052 relresfld 5199 poxp 6290 nndi 6544 nnmass 6545 pr2ne 7259 distrlem5prl 7653 distrlem5pru 7654 lbreu 8972 flqeqceilz 10410 divconjdvds 12014 algcvga 12219 algfx 12220 lmodfopnelem1 13880 fiinopn 14240 |
| Copyright terms: Public domain | W3C validator |