ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a GIF version

Theorem leexp1a 9975
Description: Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Proof of Theorem leexp1a
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5642 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
2 oveq2 5642 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
31, 2breq12d 3850 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0)))
43imbi2d 228 . . . . 5 (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))))
5 oveq2 5642 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
6 oveq2 5642 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
75, 6breq12d 3850 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑘) ≤ (𝐵𝑘)))
87imbi2d 228 . . . . 5 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘))))
9 oveq2 5642 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
10 oveq2 5642 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
119, 10breq12d 3850 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
1211imbi2d 228 . . . . 5 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
13 oveq2 5642 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
14 oveq2 5642 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
1513, 14breq12d 3850 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑁) ≤ (𝐵𝑁)))
1615imbi2d 228 . . . . 5 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))))
17 recn 7454 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 7454 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp0 9924 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2019adantr 270 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1)
21 1le1 8025 . . . . . . . . 9 1 ≤ 1
2220, 21syl6eqbr 3874 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ 1)
23 exp0 9924 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
2423adantl 271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2522, 24breqtrrd 3863 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0))
2617, 18, 25syl2an 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0))
2726adantr 270 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))
28 simpll 496 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
29 reexpcl 9937 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
3028, 29sylan 277 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
31 simplll 500 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
32 simpr 108 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
33 simplrl 502 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
34 expge0 9956 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
3531, 32, 33, 34syl3anc 1174 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
36 simplr 497 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐵 ∈ ℝ)
37 reexpcl 9937 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3836, 37sylan 277 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3930, 35, 38jca31 302 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ))
40 simpl 107 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
41 simpl 107 . . . . . . . . . . . . . 14 ((0 ≤ 𝐴𝐴𝐵) → 0 ≤ 𝐴)
4240, 41anim12i 331 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4342adantr 270 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
44 simpllr 501 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℝ)
4539, 43, 44jca32 303 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
4645adantr 270 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
47 simpr 108 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ≤ (𝐵𝑘))
48 simplrr 503 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
4948adantr 270 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → 𝐴𝐵)
5047, 49jca 300 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵))
51 lemul12a 8295 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵)))
5246, 50, 51sylc 61 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵))
53 expp1 9927 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5417, 53sylan 277 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5554adantlr 461 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5655adantlr 461 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756adantr 270 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
58 expp1 9927 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5918, 58sylan 277 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6059adantll 460 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160adantlr 461 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6261adantr 270 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6352, 57, 623brtr4d 3867 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))
6463ex 113 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
6564expcom 114 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
6665a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
674, 8, 12, 16, 27, 66nn0ind 8830 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁)))
6867exp4c 360 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
6968com3l 80 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0 → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
70693imp1 1156 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438   class class class wbr 3837  (class class class)co 5634  cc 7327  cr 7328  0cc0 7329  1c1 7330   + caddc 7332   · cmul 7334  cle 7502  0cn0 8643  cexp 9919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-iseq 9818  df-seq3 9819  df-exp 9920
This theorem is referenced by:  expubnd  9977  facubnd  10118  expcnvre  10858
  Copyright terms: Public domain W3C validator