ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a GIF version

Theorem leexp1a 10803
Description: Weak base ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Proof of Theorem leexp1a
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
2 oveq2 6002 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
31, 2breq12d 4095 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0)))
43imbi2d 230 . . . . 5 (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))))
5 oveq2 6002 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
6 oveq2 6002 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
75, 6breq12d 4095 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑘) ≤ (𝐵𝑘)))
87imbi2d 230 . . . . 5 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘))))
9 oveq2 6002 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
10 oveq2 6002 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
119, 10breq12d 4095 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
1211imbi2d 230 . . . . 5 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
13 oveq2 6002 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
14 oveq2 6002 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
1513, 14breq12d 4095 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑁) ≤ (𝐵𝑁)))
1615imbi2d 230 . . . . 5 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))))
17 recn 8120 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 8120 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp0 10752 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2019adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1)
21 1le1 8707 . . . . . . . . 9 1 ≤ 1
2220, 21eqbrtrdi 4121 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ 1)
23 exp0 10752 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
2423adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2522, 24breqtrrd 4110 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0))
2617, 18, 25syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0))
2726adantr 276 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))
28 simpll 527 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
29 reexpcl 10765 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
3028, 29sylan 283 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
31 simplll 533 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
32 simpr 110 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
33 simplrl 535 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
34 expge0 10784 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
3531, 32, 33, 34syl3anc 1271 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
36 simplr 528 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐵 ∈ ℝ)
37 reexpcl 10765 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3836, 37sylan 283 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3930, 35, 38jca31 309 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ))
40 simpl 109 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
41 simpl 109 . . . . . . . . . . . . . 14 ((0 ≤ 𝐴𝐴𝐵) → 0 ≤ 𝐴)
4240, 41anim12i 338 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4342adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
44 simpllr 534 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℝ)
4539, 43, 44jca32 310 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
4645adantr 276 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
47 simpr 110 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ≤ (𝐵𝑘))
48 simplrr 536 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
4948adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → 𝐴𝐵)
5047, 49jca 306 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵))
51 lemul12a 8997 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵)))
5246, 50, 51sylc 62 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵))
53 expp1 10755 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5417, 53sylan 283 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5554adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5655adantlr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756adantr 276 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
58 expp1 10755 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5918, 58sylan 283 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6059adantll 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160adantlr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6261adantr 276 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6352, 57, 623brtr4d 4114 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))
6463ex 115 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
6564expcom 116 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
6665a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
674, 8, 12, 16, 27, 66nn0ind 9549 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁)))
6867exp4c 368 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
6968com3l 81 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0 → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
70693imp1 1244 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992  cle 8170  0cn0 9357  cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by:  expubnd  10805  facubnd  10954  expcnvre  12000
  Copyright terms: Public domain W3C validator