ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algfx GIF version

Theorem algfx 12052
Description: If 𝐹 reaches a fixed point when the countdown function 𝐢 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:π‘†βŸΆπ‘†
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (β„•0 Γ— {𝐴}))
algcvga.3 𝐢:π‘†βŸΆβ„•0
algcvga.4 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§)))
algcvga.5 𝑁 = (πΆβ€˜π΄)
algfx.6 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜π‘§) = 0 β†’ (πΉβ€˜π‘§) = 𝑧))
Assertion
Ref Expression
algfx (𝐴 ∈ 𝑆 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘)))
Distinct variable groups:   𝑧,𝐢   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem algfx
Dummy variables π‘˜ π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (πΆβ€˜π΄)
2 algcvga.3 . . . . 5 𝐢:π‘†βŸΆβ„•0
32ffvelcdmi 5651 . . . 4 (𝐴 ∈ 𝑆 β†’ (πΆβ€˜π΄) ∈ β„•0)
41, 3eqeltrid 2264 . . 3 (𝐴 ∈ 𝑆 β†’ 𝑁 ∈ β„•0)
54nn0zd 9373 . 2 (𝐴 ∈ 𝑆 β†’ 𝑁 ∈ β„€)
6 uzval 9530 . . . . . . 7 (𝑁 ∈ β„€ β†’ (β„€β‰₯β€˜π‘) = {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧})
76eleq2d 2247 . . . . . 6 (𝑁 ∈ β„€ β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) ↔ 𝐾 ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}))
87pm5.32i 454 . . . . 5 ((𝑁 ∈ β„€ ∧ 𝐾 ∈ (β„€β‰₯β€˜π‘)) ↔ (𝑁 ∈ β„€ ∧ 𝐾 ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}))
9 fveqeq2 5525 . . . . . . 7 (π‘š = 𝑁 β†’ ((π‘…β€˜π‘š) = (π‘…β€˜π‘) ↔ (π‘…β€˜π‘) = (π‘…β€˜π‘)))
109imbi2d 230 . . . . . 6 (π‘š = 𝑁 β†’ ((𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘š) = (π‘…β€˜π‘)) ↔ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘) = (π‘…β€˜π‘))))
11 fveqeq2 5525 . . . . . . 7 (π‘š = π‘˜ β†’ ((π‘…β€˜π‘š) = (π‘…β€˜π‘) ↔ (π‘…β€˜π‘˜) = (π‘…β€˜π‘)))
1211imbi2d 230 . . . . . 6 (π‘š = π‘˜ β†’ ((𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘š) = (π‘…β€˜π‘)) ↔ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘˜) = (π‘…β€˜π‘))))
13 fveqeq2 5525 . . . . . . 7 (π‘š = (π‘˜ + 1) β†’ ((π‘…β€˜π‘š) = (π‘…β€˜π‘) ↔ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘)))
1413imbi2d 230 . . . . . 6 (π‘š = (π‘˜ + 1) β†’ ((𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘š) = (π‘…β€˜π‘)) ↔ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘))))
15 fveqeq2 5525 . . . . . . 7 (π‘š = 𝐾 β†’ ((π‘…β€˜π‘š) = (π‘…β€˜π‘) ↔ (π‘…β€˜πΎ) = (π‘…β€˜π‘)))
1615imbi2d 230 . . . . . 6 (π‘š = 𝐾 β†’ ((𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘š) = (π‘…β€˜π‘)) ↔ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘))))
17 eqidd 2178 . . . . . . 7 (𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘) = (π‘…β€˜π‘))
1817a1i 9 . . . . . 6 (𝑁 ∈ β„€ β†’ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘) = (π‘…β€˜π‘)))
196eleq2d 2247 . . . . . . . . 9 (𝑁 ∈ β„€ β†’ (π‘˜ ∈ (β„€β‰₯β€˜π‘) ↔ π‘˜ ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}))
2019pm5.32i 454 . . . . . . . 8 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) ↔ (𝑁 ∈ β„€ ∧ π‘˜ ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}))
21 eluznn0 9599 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ π‘˜ ∈ β„•0)
224, 21sylan 283 . . . . . . . . . . . . . 14 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ π‘˜ ∈ β„•0)
23 nn0uz 9562 . . . . . . . . . . . . . . 15 β„•0 = (β„€β‰₯β€˜0)
24 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (β„•0 Γ— {𝐴}))
25 0zd 9265 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝑆 β†’ 0 ∈ β„€)
26 id 19 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝑆 β†’ 𝐴 ∈ 𝑆)
27 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:π‘†βŸΆπ‘†
2827a1i 9 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝑆 β†’ 𝐹:π‘†βŸΆπ‘†)
2923, 24, 25, 26, 28algrp1 12046 . . . . . . . . . . . . . 14 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ (π‘…β€˜(π‘˜ + 1)) = (πΉβ€˜(π‘…β€˜π‘˜)))
3022, 29syldan 282 . . . . . . . . . . . . 13 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘…β€˜(π‘˜ + 1)) = (πΉβ€˜(π‘…β€˜π‘˜)))
3123, 24, 25, 26, 28algrf 12045 . . . . . . . . . . . . . . . 16 (𝐴 ∈ 𝑆 β†’ 𝑅:β„•0βŸΆπ‘†)
3231ffvelcdmda 5652 . . . . . . . . . . . . . . 15 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ (π‘…β€˜π‘˜) ∈ 𝑆)
3322, 32syldan 282 . . . . . . . . . . . . . 14 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘…β€˜π‘˜) ∈ 𝑆)
34 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§)))
3527, 24, 2, 34, 1algcvga 12051 . . . . . . . . . . . . . . 15 (𝐴 ∈ 𝑆 β†’ (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (πΆβ€˜(π‘…β€˜π‘˜)) = 0))
3635imp 124 . . . . . . . . . . . . . 14 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (πΆβ€˜(π‘…β€˜π‘˜)) = 0)
37 fveqeq2 5525 . . . . . . . . . . . . . . . 16 (𝑧 = (π‘…β€˜π‘˜) β†’ ((πΆβ€˜π‘§) = 0 ↔ (πΆβ€˜(π‘…β€˜π‘˜)) = 0))
38 fveq2 5516 . . . . . . . . . . . . . . . . 17 (𝑧 = (π‘…β€˜π‘˜) β†’ (πΉβ€˜π‘§) = (πΉβ€˜(π‘…β€˜π‘˜)))
39 id 19 . . . . . . . . . . . . . . . . 17 (𝑧 = (π‘…β€˜π‘˜) β†’ 𝑧 = (π‘…β€˜π‘˜))
4038, 39eqeq12d 2192 . . . . . . . . . . . . . . . 16 (𝑧 = (π‘…β€˜π‘˜) β†’ ((πΉβ€˜π‘§) = 𝑧 ↔ (πΉβ€˜(π‘…β€˜π‘˜)) = (π‘…β€˜π‘˜)))
4137, 40imbi12d 234 . . . . . . . . . . . . . . 15 (𝑧 = (π‘…β€˜π‘˜) β†’ (((πΆβ€˜π‘§) = 0 β†’ (πΉβ€˜π‘§) = 𝑧) ↔ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΉβ€˜(π‘…β€˜π‘˜)) = (π‘…β€˜π‘˜))))
42 algfx.6 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜π‘§) = 0 β†’ (πΉβ€˜π‘§) = 𝑧))
4341, 42vtoclga 2804 . . . . . . . . . . . . . 14 ((π‘…β€˜π‘˜) ∈ 𝑆 β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΉβ€˜(π‘…β€˜π‘˜)) = (π‘…β€˜π‘˜)))
4433, 36, 43sylc 62 . . . . . . . . . . . . 13 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (πΉβ€˜(π‘…β€˜π‘˜)) = (π‘…β€˜π‘˜))
4530, 44eqtrd 2210 . . . . . . . . . . . 12 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘˜))
4645eqeq1d 2186 . . . . . . . . . . 11 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ ((π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘) ↔ (π‘…β€˜π‘˜) = (π‘…β€˜π‘)))
4746biimprd 158 . . . . . . . . . 10 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ ((π‘…β€˜π‘˜) = (π‘…β€˜π‘) β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘)))
4847expcom 116 . . . . . . . . 9 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (𝐴 ∈ 𝑆 β†’ ((π‘…β€˜π‘˜) = (π‘…β€˜π‘) β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘))))
4948adantl 277 . . . . . . . 8 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ (𝐴 ∈ 𝑆 β†’ ((π‘…β€˜π‘˜) = (π‘…β€˜π‘) β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘))))
5020, 49sylbir 135 . . . . . . 7 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}) β†’ (𝐴 ∈ 𝑆 β†’ ((π‘…β€˜π‘˜) = (π‘…β€˜π‘) β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘))))
5150a2d 26 . . . . . 6 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}) β†’ ((𝐴 ∈ 𝑆 β†’ (π‘…β€˜π‘˜) = (π‘…β€˜π‘)) β†’ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜(π‘˜ + 1)) = (π‘…β€˜π‘))))
5210, 12, 14, 16, 18, 51uzind3 9366 . . . . 5 ((𝑁 ∈ β„€ ∧ 𝐾 ∈ {𝑧 ∈ β„€ ∣ 𝑁 ≀ 𝑧}) β†’ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘)))
538, 52sylbi 121 . . . 4 ((𝑁 ∈ β„€ ∧ 𝐾 ∈ (β„€β‰₯β€˜π‘)) β†’ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘)))
5453ex 115 . . 3 (𝑁 ∈ β„€ β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (𝐴 ∈ 𝑆 β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘))))
5554com3r 79 . 2 (𝐴 ∈ 𝑆 β†’ (𝑁 ∈ β„€ β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘))))
565, 55mpd 13 1 (𝐴 ∈ 𝑆 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (π‘…β€˜πΎ) = (π‘…β€˜π‘)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  {crab 2459  {csn 3593   class class class wbr 4004   Γ— cxp 4625   ∘ ccom 4631  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  1st c1st 6139  0cc0 7811  1c1 7812   + caddc 7814   < clt 7992   ≀ cle 7993  β„•0cn0 9176  β„€cz 9253  β„€β‰₯cuz 9528  seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator