ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algfx GIF version

Theorem algfx 12006
Description: If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
algfx.6 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
Assertion
Ref Expression
algfx (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem algfx
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . . 5 𝐶:𝑆⟶ℕ0
32ffvelrni 5630 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2257 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
54nn0zd 9332 . 2 (𝐴𝑆𝑁 ∈ ℤ)
6 uzval 9489 . . . . . . 7 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑧 ∈ ℤ ∣ 𝑁𝑧})
76eleq2d 2240 . . . . . 6 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
87pm5.32i 451 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
9 fveqeq2 5505 . . . . . . 7 (𝑚 = 𝑁 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑁) = (𝑅𝑁)))
109imbi2d 229 . . . . . 6 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))))
11 fveqeq2 5505 . . . . . . 7 (𝑚 = 𝑘 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
1211imbi2d 229 . . . . . 6 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁))))
13 fveqeq2 5505 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
1413imbi2d 229 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
15 fveqeq2 5505 . . . . . . 7 (𝑚 = 𝐾 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝐾) = (𝑅𝑁)))
1615imbi2d 229 . . . . . 6 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
17 eqidd 2171 . . . . . . 7 (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))
1817a1i 9 . . . . . 6 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁)))
196eleq2d 2240 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
2019pm5.32i 451 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
21 eluznn0 9558 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
224, 21sylan 281 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
23 nn0uz 9521 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
24 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
25 0zd 9224 . . . . . . . . . . . . . . 15 (𝐴𝑆 → 0 ∈ ℤ)
26 id 19 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐴𝑆)
27 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:𝑆𝑆
2827a1i 9 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐹:𝑆𝑆)
2923, 24, 25, 26, 28algrp1 12000 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3022, 29syldan 280 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3123, 24, 25, 26, 28algrf 11999 . . . . . . . . . . . . . . . 16 (𝐴𝑆𝑅:ℕ0𝑆)
3231ffvelrnda 5631 . . . . . . . . . . . . . . 15 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
3322, 32syldan 280 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅𝑘) ∈ 𝑆)
34 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3527, 24, 2, 34, 1algcvga 12005 . . . . . . . . . . . . . . 15 (𝐴𝑆 → (𝑘 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝑘)) = 0))
3635imp 123 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐶‘(𝑅𝑘)) = 0)
37 fveqeq2 5505 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐶𝑧) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
38 fveq2 5496 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
39 id 19 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → 𝑧 = (𝑅𝑘))
4038, 39eqeq12d 2185 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4137, 40imbi12d 233 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧) ↔ ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))))
42 algfx.6 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
4341, 42vtoclga 2796 . . . . . . . . . . . . . 14 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4433, 36, 43sylc 62 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))
4530, 44eqtrd 2203 . . . . . . . . . . . 12 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅𝑘))
4645eqeq1d 2179 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
4746biimprd 157 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
4847expcom 115 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
4948adantl 275 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5020, 49sylbir 134 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5150a2d 26 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → ((𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁)) → (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5210, 12, 14, 16, 18, 51uzind3 9325 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
538, 52sylbi 120 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
5453ex 114 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
5554com3r 79 . 2 (𝐴𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁))))
565, 55mpd 13 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  {crab 2452  {csn 3583   class class class wbr 3989   × cxp 4609  ccom 4615  wf 5194  cfv 5198  (class class class)co 5853  1st c1st 6117  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cle 7955  0cn0 9135  cz 9212  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator