Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2ne GIF version

Theorem pr2ne 7077
 Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 3611 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2144 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 6704 . . . . . 6 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
43adantr 274 . . . . 5 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐴} ≈ 1o)
5 prexg 4144 . . . . . . 7 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ∈ V)
6 eqeng 6672 . . . . . . 7 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
75, 6syl 14 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
8 entr 6690 . . . . . . . . 9 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
9 1nen2 6767 . . . . . . . . . . 11 ¬ 1o ≈ 2o
10 ensym 6687 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
11 entr 6690 . . . . . . . . . . . . 13 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
1211ex 114 . . . . . . . . . . . 12 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
1310, 12syl 14 . . . . . . . . . . 11 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
149, 13mtoi 654 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1514a1d 22 . . . . . . . . 9 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
168, 15syl 14 . . . . . . . 8 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1716ex 114 . . . . . . 7 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
1817com3r 79 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
197, 18syld 45 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
204, 19mpid 42 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
212, 20syl5 32 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2221necon2ad 2367 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
23 pr2nelem 7076 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
24233expia 1184 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2522, 24impbid 128 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2112   ≠ wne 2310  Vcvv 2691  {cpr 3535   class class class wbr 3939  1oc1o 6318  2oc2o 6319   ≈ cen 6644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-ral 2423  df-rex 2424  df-reu 2425  df-rab 2427  df-v 2693  df-sbc 2916  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-br 3940  df-opab 4000  df-tr 4037  df-id 4226  df-iord 4299  df-on 4301  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-1o 6325  df-2o 6326  df-er 6441  df-en 6647 This theorem is referenced by:  exmidonfinlem  7078  pw1dom2  7107  isprm2lem  11869
 Copyright terms: Public domain W3C validator