| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pr2ne | GIF version | ||
| Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
| Ref | Expression |
|---|---|
| pr2ne | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3721 | . . . . 5 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
| 2 | 1 | eqcoms 2210 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴}) |
| 3 | enpr1g 6913 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≈ 1o) | |
| 4 | 3 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐴} ≈ 1o) |
| 5 | prexg 4271 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ∈ V) | |
| 6 | eqeng 6880 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})) |
| 8 | entr 6899 | . . . . . . . . 9 ⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o) | |
| 9 | 1nen2 6983 | . . . . . . . . . . 11 ⊢ ¬ 1o ≈ 2o | |
| 10 | ensym 6896 | . . . . . . . . . . . 12 ⊢ ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵}) | |
| 11 | entr 6899 | . . . . . . . . . . . . 13 ⊢ ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o) | |
| 12 | 11 | ex 115 | . . . . . . . . . . . 12 ⊢ (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o)) |
| 13 | 10, 12 | syl 14 | . . . . . . . . . . 11 ⊢ ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o)) |
| 14 | 9, 13 | mtoi 666 | . . . . . . . . . 10 ⊢ ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o) |
| 15 | 14 | a1d 22 | . . . . . . . . 9 ⊢ ({𝐴, 𝐵} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 16 | 8, 15 | syl 14 | . . . . . . . 8 ⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 17 | 16 | ex 115 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 18 | 17 | com3r 79 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 19 | 7, 18 | syld 45 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 20 | 4, 19 | mpid 42 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 21 | 2, 20 | syl5 32 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 22 | 21 | necon2ad 2435 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o → 𝐴 ≠ 𝐵)) |
| 23 | pr2nelem 7325 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
| 24 | 23 | 3expia 1208 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
| 25 | 22, 24 | impbid 129 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 Vcvv 2776 {cpr 3644 class class class wbr 4059 1oc1o 6518 2oc2o 6519 ≈ cen 6848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 |
| This theorem is referenced by: en2prde 7327 pr1or2 7328 exmidonfinlem 7332 pw1dom2 7373 isprm2lem 12553 umgrbien 15821 umgrnloopvv 15825 umgredgne 15854 |
| Copyright terms: Public domain | W3C validator |