ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2ne GIF version

Theorem pr2ne 7190
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 3670 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2180 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 6797 . . . . . 6 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
43adantr 276 . . . . 5 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐴} ≈ 1o)
5 prexg 4211 . . . . . . 7 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ∈ V)
6 eqeng 6765 . . . . . . 7 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
75, 6syl 14 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
8 entr 6783 . . . . . . . . 9 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
9 1nen2 6860 . . . . . . . . . . 11 ¬ 1o ≈ 2o
10 ensym 6780 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
11 entr 6783 . . . . . . . . . . . . 13 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
1211ex 115 . . . . . . . . . . . 12 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
1310, 12syl 14 . . . . . . . . . . 11 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
149, 13mtoi 664 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1514a1d 22 . . . . . . . . 9 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
168, 15syl 14 . . . . . . . 8 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1716ex 115 . . . . . . 7 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
1817com3r 79 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
197, 18syld 45 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
204, 19mpid 42 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
212, 20syl5 32 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2221necon2ad 2404 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
23 pr2nelem 7189 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
24233expia 1205 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2522, 24impbid 129 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  Vcvv 2737  {cpr 3593   class class class wbr 4003  1oc1o 6409  2oc2o 6410  cen 6737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1o 6416  df-2o 6417  df-er 6534  df-en 6740
This theorem is referenced by:  exmidonfinlem  7191  pw1dom2  7225  isprm2lem  12115
  Copyright terms: Public domain W3C validator