ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2ne GIF version

Theorem pr2ne 7016
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 3571 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2120 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 6660 . . . . . 6 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
43adantr 274 . . . . 5 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐴} ≈ 1o)
5 prexg 4103 . . . . . . 7 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ∈ V)
6 eqeng 6628 . . . . . . 7 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
75, 6syl 14 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
8 entr 6646 . . . . . . . . 9 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
9 1nen2 6723 . . . . . . . . . . 11 ¬ 1o ≈ 2o
10 ensym 6643 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
11 entr 6646 . . . . . . . . . . . . 13 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
1211ex 114 . . . . . . . . . . . 12 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
1310, 12syl 14 . . . . . . . . . . 11 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
149, 13mtoi 638 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1514a1d 22 . . . . . . . . 9 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
168, 15syl 14 . . . . . . . 8 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1716ex 114 . . . . . . 7 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
1817com3r 79 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
197, 18syld 45 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)))
204, 19mpid 42 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
212, 20syl5 32 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2221necon2ad 2342 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
23 pr2nelem 7015 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
24233expia 1168 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2522, 24impbid 128 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wne 2285  Vcvv 2660  {cpr 3498   class class class wbr 3899  1oc1o 6274  2oc2o 6275  cen 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603
This theorem is referenced by:  exmidonfinlem  7017  isprm2lem  11724  pw1dom2  13117
  Copyright terms: Public domain W3C validator