ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relresfld GIF version

Theorem relresfld 5133
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld (Rel 𝑅 → (𝑅 𝑅) = 𝑅)

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 5132 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
21reseq2d 4884 . . 3 (Rel 𝑅 → (𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
3 resundi 4897 . . 3 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))
4 eqtr 2183 . . . 4 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)))
5 resss 4908 . . . . 5 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
6 resdm 4923 . . . . 5 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
7 ssequn2 3295 . . . . . 6 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
8 uneq1 3269 . . . . . . . . 9 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
98eqeq2d 2177 . . . . . . . 8 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) ↔ (𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))))
10 eqtr 2183 . . . . . . . . 9 (((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) ∧ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) → (𝑅 𝑅) = 𝑅)
1110ex 114 . . . . . . . 8 ((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅))
129, 11syl6bi 162 . . . . . . 7 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅)))
1312com3r 79 . . . . . 6 ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
147, 13sylbi 120 . . . . 5 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
155, 6, 14mpsyl 65 . . . 4 (Rel 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅))
164, 15syl5com 29 . . 3 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
172, 3, 16sylancl 410 . 2 (Rel 𝑅 → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
1817pm2.43i 49 1 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  cun 3114  wss 3116   cuni 3789  dom cdm 4604  ran crn 4605  cres 4606  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator