ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relresfld GIF version

Theorem relresfld 5195
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld (Rel 𝑅 → (𝑅 𝑅) = 𝑅)

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 5194 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
21reseq2d 4942 . . 3 (Rel 𝑅 → (𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
3 resundi 4955 . . 3 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))
4 eqtr 2211 . . . 4 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)))
5 resss 4966 . . . . 5 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
6 resdm 4981 . . . . 5 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
7 ssequn2 3332 . . . . . 6 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
8 uneq1 3306 . . . . . . . . 9 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
98eqeq2d 2205 . . . . . . . 8 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) ↔ (𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))))
10 eqtr 2211 . . . . . . . . 9 (((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) ∧ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) → (𝑅 𝑅) = 𝑅)
1110ex 115 . . . . . . . 8 ((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅))
129, 11biimtrdi 163 . . . . . . 7 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅)))
1312com3r 79 . . . . . 6 ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
147, 13sylbi 121 . . . . 5 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
155, 6, 14mpsyl 65 . . . 4 (Rel 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅))
164, 15syl5com 29 . . 3 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
172, 3, 16sylancl 413 . 2 (Rel 𝑅 → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
1817pm2.43i 49 1 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cun 3151  wss 3153   cuni 3835  dom cdm 4659  ran crn 4660  cres 4661  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator