ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz GIF version

Theorem flqeqceilz 10427
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10391 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 10424 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2232 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 flqcl 10380 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
5 zq 9717 . . . . . 6 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
64, 5syl 14 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
7 qdceq 10351 . . . . 5 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → DECID (⌊‘𝐴) = 𝐴)
86, 7mpancom 422 . . . 4 (𝐴 ∈ ℚ → DECID (⌊‘𝐴) = 𝐴)
9 exmiddc 837 . . . 4 (DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
108, 9syl 14 . . 3 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
11 eqeq1 2203 . . . . . . 7 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
1211adantr 276 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
13 ceilqidz 10425 . . . . . . . . 9 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
14 eqcom 2198 . . . . . . . . 9 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
1513, 14bitrdi 196 . . . . . . . 8 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
1615biimprd 158 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1716adantl 277 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1812, 17sylbid 150 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1918ex 115 . . . 4 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
20 flqle 10385 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
21 df-ne 2368 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
22 necom 2451 . . . . . . 7 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
23 qltlen 9731 . . . . . . . . . . 11 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
246, 23mpancom 422 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
25 breq1 4037 . . . . . . . . . . . . . 14 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2625adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
27 ceilqge 10419 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
28 qre 9716 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
29 ceilqcl 10417 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
3029zred 9465 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℝ)
3128, 30lenltd 8161 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
32 pm2.21 618 . . . . . . . . . . . . . . . 16 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3331, 32biimtrdi 163 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3427, 33mpd 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3534adantr 276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3626, 35sylbid 150 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3736ex 115 . . . . . . . . . . 11 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3837com23 78 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3924, 38sylbird 170 . . . . . . . . 9 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4039expd 258 . . . . . . . 8 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4140com3r 79 . . . . . . 7 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4222, 41sylbi 121 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4321, 42sylbir 135 . . . . 5 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4420, 43mpdi 43 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4519, 44jaoi 717 . . 3 (((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4610, 45mpcom 36 . 2 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 143 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259   < clt 8078  cle 8079  cz 9343  cq 9710  cfl 10375  cceil 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-ceil 10378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator