ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz GIF version

Theorem flqeqceilz 10311
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10277 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 10308 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2213 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 flqcl 10266 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
5 zq 9620 . . . . . 6 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
64, 5syl 14 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
7 qdceq 10240 . . . . 5 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → DECID (⌊‘𝐴) = 𝐴)
86, 7mpancom 422 . . . 4 (𝐴 ∈ ℚ → DECID (⌊‘𝐴) = 𝐴)
9 exmiddc 836 . . . 4 (DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
108, 9syl 14 . . 3 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
11 eqeq1 2184 . . . . . . 7 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
1211adantr 276 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
13 ceilqidz 10309 . . . . . . . . 9 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
14 eqcom 2179 . . . . . . . . 9 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
1513, 14bitrdi 196 . . . . . . . 8 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
1615biimprd 158 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1716adantl 277 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1812, 17sylbid 150 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1918ex 115 . . . 4 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
20 flqle 10271 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
21 df-ne 2348 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
22 necom 2431 . . . . . . 7 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
23 qltlen 9634 . . . . . . . . . . 11 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
246, 23mpancom 422 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
25 breq1 4004 . . . . . . . . . . . . . 14 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2625adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
27 ceilqge 10303 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
28 qre 9619 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
29 ceilqcl 10301 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
3029zred 9369 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℝ)
3128, 30lenltd 8069 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
32 pm2.21 617 . . . . . . . . . . . . . . . 16 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3331, 32syl6bi 163 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3427, 33mpd 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3534adantr 276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3626, 35sylbid 150 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3736ex 115 . . . . . . . . . . 11 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3837com23 78 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3924, 38sylbird 170 . . . . . . . . 9 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4039expd 258 . . . . . . . 8 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4140com3r 79 . . . . . . 7 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4222, 41sylbi 121 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4321, 42sylbir 135 . . . . 5 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4420, 43mpdi 43 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4519, 44jaoi 716 . . 3 (((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4610, 45mpcom 36 . 2 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 143 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4001  cfv 5213   < clt 7986  cle 7987  cz 9247  cq 9613  cfl 10261  cceil 10262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924  ax-arch 7925
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-id 4291  df-po 4294  df-iso 4295  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-n0 9171  df-z 9248  df-q 9614  df-rp 9648  df-fl 10263  df-ceil 10264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator