ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz GIF version

Theorem flqeqceilz 10480
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10444 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 10477 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2242 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 flqcl 10433 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
5 zq 9762 . . . . . 6 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
64, 5syl 14 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
7 qdceq 10404 . . . . 5 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → DECID (⌊‘𝐴) = 𝐴)
86, 7mpancom 422 . . . 4 (𝐴 ∈ ℚ → DECID (⌊‘𝐴) = 𝐴)
9 exmiddc 838 . . . 4 (DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
108, 9syl 14 . . 3 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
11 eqeq1 2213 . . . . . . 7 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
1211adantr 276 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
13 ceilqidz 10478 . . . . . . . . 9 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
14 eqcom 2208 . . . . . . . . 9 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
1513, 14bitrdi 196 . . . . . . . 8 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
1615biimprd 158 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1716adantl 277 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1812, 17sylbid 150 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1918ex 115 . . . 4 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
20 flqle 10438 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
21 df-ne 2378 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
22 necom 2461 . . . . . . 7 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
23 qltlen 9776 . . . . . . . . . . 11 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
246, 23mpancom 422 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
25 breq1 4053 . . . . . . . . . . . . . 14 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2625adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
27 ceilqge 10472 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
28 qre 9761 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
29 ceilqcl 10470 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
3029zred 9510 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℝ)
3128, 30lenltd 8205 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
32 pm2.21 618 . . . . . . . . . . . . . . . 16 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3331, 32biimtrdi 163 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3427, 33mpd 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3534adantr 276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3626, 35sylbid 150 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3736ex 115 . . . . . . . . . . 11 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3837com23 78 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3924, 38sylbird 170 . . . . . . . . 9 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4039expd 258 . . . . . . . 8 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4140com3r 79 . . . . . . 7 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4222, 41sylbi 121 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4321, 42sylbir 135 . . . . 5 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4420, 43mpdi 43 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4519, 44jaoi 718 . . 3 (((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4610, 45mpcom 36 . 2 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 143 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4050  cfv 5279   < clt 8122  cle 8123  cz 9387  cq 9755  cfl 10428  cceil 10429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-po 4350  df-iso 4351  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-n0 9311  df-z 9388  df-q 9756  df-rp 9791  df-fl 10430  df-ceil 10431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator