Proof of Theorem flqeqceilz
Step | Hyp | Ref
| Expression |
1 | | flid 10219 |
. . 3
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) = 𝐴) |
2 | | ceilid 10250 |
. . 3
⊢ (𝐴 ∈ ℤ →
(⌈‘𝐴) = 𝐴) |
3 | 1, 2 | eqtr4d 2201 |
. 2
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) =
(⌈‘𝐴)) |
4 | | flqcl 10208 |
. . . . . 6
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ∈
ℤ) |
5 | | zq 9564 |
. . . . . 6
⊢
((⌊‘𝐴)
∈ ℤ → (⌊‘𝐴) ∈ ℚ) |
6 | 4, 5 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ∈
ℚ) |
7 | | qdceq 10182 |
. . . . 5
⊢
(((⌊‘𝐴)
∈ ℚ ∧ 𝐴
∈ ℚ) → DECID (⌊‘𝐴) = 𝐴) |
8 | 6, 7 | mpancom 419 |
. . . 4
⊢ (𝐴 ∈ ℚ →
DECID (⌊‘𝐴) = 𝐴) |
9 | | exmiddc 826 |
. . . 4
⊢
(DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴)) |
10 | 8, 9 | syl 14 |
. . 3
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴)) |
11 | | eqeq1 2172 |
. . . . . . 7
⊢
((⌊‘𝐴) =
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) ↔
𝐴 = (⌈‘𝐴))) |
12 | 11 | adantr 274 |
. . . . . 6
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℚ) →
((⌊‘𝐴) =
(⌈‘𝐴) ↔
𝐴 = (⌈‘𝐴))) |
13 | | ceilqidz 10251 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔
(⌈‘𝐴) = 𝐴)) |
14 | | eqcom 2167 |
. . . . . . . . 9
⊢
((⌈‘𝐴) =
𝐴 ↔ 𝐴 = (⌈‘𝐴)) |
15 | 13, 14 | bitrdi 195 |
. . . . . . . 8
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴))) |
16 | 15 | biimprd 157 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ)) |
17 | 16 | adantl 275 |
. . . . . 6
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ)) |
18 | 12, 17 | sylbid 149 |
. . . . 5
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℚ) →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)) |
19 | 18 | ex 114 |
. . . 4
⊢
((⌊‘𝐴) =
𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
20 | | flqle 10213 |
. . . . 5
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ≤
𝐴) |
21 | | df-ne 2337 |
. . . . . 6
⊢
((⌊‘𝐴)
≠ 𝐴 ↔ ¬
(⌊‘𝐴) = 𝐴) |
22 | | necom 2420 |
. . . . . . 7
⊢
((⌊‘𝐴)
≠ 𝐴 ↔ 𝐴 ≠ (⌊‘𝐴)) |
23 | | qltlen 9578 |
. . . . . . . . . . 11
⊢
(((⌊‘𝐴)
∈ ℚ ∧ 𝐴
∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 ≠ (⌊‘𝐴)))) |
24 | 6, 23 | mpancom 419 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) <
𝐴 ↔
((⌊‘𝐴) ≤
𝐴 ∧ 𝐴 ≠ (⌊‘𝐴)))) |
25 | | breq1 3985 |
. . . . . . . . . . . . . 14
⊢
((⌊‘𝐴) =
(⌈‘𝐴) →
((⌊‘𝐴) <
𝐴 ↔
(⌈‘𝐴) <
𝐴)) |
26 | 25 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℚ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌊‘𝐴) <
𝐴 ↔
(⌈‘𝐴) <
𝐴)) |
27 | | ceilqge 10245 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴)) |
28 | | qre 9563 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
29 | | ceilqcl 10243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℚ →
(⌈‘𝐴) ∈
ℤ) |
30 | 29 | zred 9313 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℚ →
(⌈‘𝐴) ∈
ℝ) |
31 | 28, 30 | lenltd 8016 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬
(⌈‘𝐴) <
𝐴)) |
32 | | pm2.21 607 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(⌈‘𝐴) <
𝐴 →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
33 | 31, 32 | syl6bi 162 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴 → 𝐴 ∈ ℤ))) |
34 | 27, 33 | mpd 13 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℚ →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
35 | 34 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℚ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
36 | 26, 35 | sylbid 149 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌊‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
37 | 36 | ex 114 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) =
(⌈‘𝐴) →
((⌊‘𝐴) <
𝐴 → 𝐴 ∈ ℤ))) |
38 | 37 | com23 78 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) <
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ))) |
39 | 24, 38 | sylbird 169 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℚ →
(((⌊‘𝐴) ≤
𝐴 ∧ 𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
40 | 39 | expd 256 |
. . . . . . . 8
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) ≤
𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
41 | 40 | com3r 79 |
. . . . . . 7
⊢ (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
42 | 22, 41 | sylbi 120 |
. . . . . 6
⊢
((⌊‘𝐴)
≠ 𝐴 → (𝐴 ∈ ℚ →
((⌊‘𝐴) ≤
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)))) |
43 | 21, 42 | sylbir 134 |
. . . . 5
⊢ (¬
(⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
44 | 20, 43 | mpdi 43 |
. . . 4
⊢ (¬
(⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
45 | 19, 44 | jaoi 706 |
. . 3
⊢
(((⌊‘𝐴)
= 𝐴 ∨ ¬
(⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
46 | 10, 45 | mpcom 36 |
. 2
⊢ (𝐴 ∈ ℚ →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)) |
47 | 3, 46 | impbid2 142 |
1
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔
(⌊‘𝐴) =
(⌈‘𝐴))) |